
Technische Universiteit Eindhoven
Department of Mathematics and Computer Science

The History of the ALGOL Effort

by

HT de Beer

supervisors:

C. Hemerik
L.M.M. Royakkers

Eindhoven, August 2006

Abstract
This report studies the importancy of the ALGOL effort for computer science.
Therefore the history of the ALGOL effort is told, starting with the compu-
tational context of the 1950s when the ALGOL effort was initiated. Second,
the development from IAL to ALGOL 60 and the role the BNF played in
this development are discussed. Third, the translation of ALGOL 60 and the
establishment of the scientific field of translator writing are treated. Finally,
the period of ALGOL 60 maintenance and the subsequent period of creating
a successor to ALGOL 60 are described.

ii

Preface
This history on the ALGOL effort was written as a Master thesis in Com-
puter Science and Engineering (Technische Informatica) at the Eindhoven
University of Technology, the Netherlands.

iii

Contents

Abstract ii

Preface iii

Contents iv

0 Introduction 1
0.0 On the sources used . 2
0.1 My own perspective . 3
0.2 The ALGOL effort: a definition 4
0.3 Notes . 4

1 Creation 5
1.0 The start of the ALGOL effort 5
1.1 The need for a universal algorithmic language 7

1.1.0 The American field of computing 7
1.1.1 The European field of computing 9
1.1.2 The difference between Europe and the USA and the need

for universalism . 11
1.2 Why was IAL chosen over other algorithmic languages? 11

1.2.0 IT . 12
1.2.1 MATH-MATIC . 14
1.2.2 FORTRAN . 15
1.2.3 IAL . 16
1.2.4 Why did IAL have to be the international algebraic lan-

guage? . 16
1.3 Conclusion . 18
1.4 Notes . 19

2 Notation 22
2.0 Why notation matters? . 22
2.1 Notations used to describe early programming languages 23

2.1.0 The notation of IAL and FORTRAN compared 23
2.1.1 The quality of IAL’s notation 26

2.2 Backus’s notation . 29
2.3 Developing ALGOL 60 . 31

iv

Contents

2.4 Conclusion . 36
2.5 Notes . 37

3 Translation 39
3.0 From craftsmanship to science 39
3.1 Sequential formula translation 41

3.1.0 The development of the sequential formula translation
technique . 43

3.1.1 Sequental formula translation explained 46
3.2 Implementing procedures and recursion 49

3.2.0 “Solving” by ignoring 49
3.2.1 Dijkstra’s Recursive Programming 50
3.2.2 The solution of Irons and Feurzeig 51

3.3 The influence of ALGOL’s structure 54
3.3.0 Grau’s recursive translation technique 54
3.3.1 Irons’s syntax directed compiler 55
3.3.2 Lucas’s structure of formula translators 56
3.3.3 Connecting ALGOL-like languages with context-free lan-

guage theory . 58
3.4 Conclusion . 59
3.5 Notes . 60

4 Succession 63
4.0 Use and maintenance of ALGOL 60 63
4.1 The move of responsibility for ALGOL to WG 2.1 65
4.2 On ALGOL X and Y . 67
4.3 The end of the ALGOL effort: the creation of ALGOL 68 72

4.3.0 Orthogonality versus pragmatism 72
4.3.1 A contribution to the development of ALGOL 73
4.3.2 The end and the ALGOL 68 report 75

4.4 Conclusion . 76
4.5 Notes . 77

5 Conclusion 80
5.0 Summary . 80

5.0.0 The start of the ALGOL effort 80
5.0.1 From IAL to ALGOL 60: notation and language 82
5.0.2 From craftsmanship to science: translating ALGOL 60 . . 83
5.0.3 In search of a worthy successor to ALGOL 60 84

5.1 Conclusions: The important contributions by the ALGOL effort . 85
5.1.0 The Backus Naur Form 85

v

Contents

5.1.1 Programming language concepts 86
5.1.2 Syntax directed translation and dynamic memory mana-

gement . 87
5.1.3 The contribution of the field of translator writing 88

5.2 Success and failure . 88
5.3 Notes . 89

Bibliography 90

vi

0 Introduction
On Sources, Perspective and the ALGOL Effort

What was the importance of the ALGOL effort for computer science? •
On the sources used to answer this question • My own perspective on
ALGOL and the ALGOL effort • And the meaning of the term “ALGOL
effort”

On May 20th, 2006, Peter Naur received the 2005 ACM Turing Award.
This award is often regarded as the “Nobel Prize” in Computer Science. Naur
was rewarded for his ‘pioneering work on defining the Algol 60 programming
language. (...) [He] was editor in 1960 of the hugely influential ”Report on the
Algorithmic Language Algol 60.” He is recognised for the report’s elegance,
uniformity and coherence, and credited as an important contributor to the
language’s power and simplicity.’0

Forty-five years after the publication of the ALGOL 60 report, it is still
regarded as one of the most influential papers in computer science. Pe-
ter Naur was not the only Turing Award winner related to the ALGOL
effort: A.J. Perlis, J. McCarthy, E.W. Dijkstra, J. Backus, R.W. Floyd,
C.A.R. Hoare, and N. Wirth were all awarded before him.1 It may be not for
their work in the ALGOL effort per sé, but they were all part of the effort,
either as a member of the committee defining ALGOL 58 or ALGOL 60, as
an implementor of ALGOL 60, as a contributor to the theory of formal lan-
guages stimulated by ALGOL 60, or as a member of the committee working
on a new ALGOL in the 1960s.

The awarding of these computer scientists indicates that the ALGOL ef-
fort was an important part of the development of computer science itself.
This importance is often stated without elaborating exactly why it was so
important. ALGOL 60 was not the first programming language and it cer-
tainly was not the most used one. So, the question arises: What was the
importance of the ALGOL effort for computer science?

To answer this question, the history of the ALGOL effort is told. First,
in Chapter 1, the start of the effort is discussed and the central question in
that chapter is: Why was there a need for an effort like the ALGOL effort?

1

0 Introduction

This question will be answered by treating the computational context in
which this effort was initiated; the algebraic programming languages from
the 1950s are compared including the first language created by the ALGOL
effort, ALGOL 58. Was this International Algebraic Language really better
than these other algebraic languages?

Then, in Chapter 2, the development from ALGOL 58 leading to the
publication of the Report on the algorithmic language ALGOL 60 2 in May
1960 is treated. In this period, the notation used to describe and define
programming languages changed fundamentally. The resulting ALGOL 60
report would become the standard for defining programming languages. Both
the interesting new features in the programming language ALGOL 60 and
the reasons why this new notation was developed during the ALGOL effort,
are discussed.

ALGOL 60 is often related to the development of formal language theory
in computer science. This development was a result of the common effort
to create translators for ALGOL 60. How did this development take shape,
and, more importantly, what was the importance of this development for
computer science? These questions are answered in Chapter 3.

After the publication of the ALGOL effort, a period of maintenance of
the ALGOL 60 language was started. During this period, the responsibility
for ALGOL was transferred to an international body: the famous Working
Group 2.1 of IFIP. Later, this working group developed a new ALGOL re-
sulting in dismay and the end of the ALGOL effort. This end of the ALGOL
effort did not set a good example for computer science, and the question
arises: what was the importance, if any, of the effort to create a new AL-
GOL? (See Chapter 4)

Finally, in Chapter 5, the conclusion of this research on the ALGOL effort
is drawn by answering the main question: What was the the importance of
the ALGOL effort for computer science? Before the history of the ALGOL
effort is told some remarks on the sources used, on my perspective, and on
the term “ALGOL effort” are made.

0.0 On the sources used

For this research both primary and secondary sources are used. The primary
sources are almost all scientific publications. Most of them are articles from
the Communications of the ACM and the ALGOL Bulletin related to the AL-
GOL effort. Using scientific publications as primary sources, in particular
shorter articles, has a disadvantage: they were prepared to be published, and
they give an academic view on developments in the ALGOL effort.

2

0.1 My own perspective

The ALGOL Bulletin is somewhat different from the other sources because
it was edited by one person. The editor’s perspective has influenced some
of the content. Especially when reporting on institutional matters or when
asking questions to the audience the information presented in the ALGOL
Bulletin can give a coloured view on historical events in the ALGOL effort.

The secondary sources I have used consisted of historical works on com-
puter science, on programming languages in general, on the ALGOL effort,
and on some aspects of the ALGOL effort. Many of these works were written
by people involved in the historical subject they wrote about. This gives the
reader a special and direct view on the matter. Although the authors try
to reflect and try to be as objective as possible, these histories are personal
and, hence, subjective.

In this category, the proceedings of the two ACM SIGPLAN conferences
on History of Programming Languages are great recourses on the history of
the selected programming languages. The papers in these proceedings were
written by the people behind those languages and are extremely useful to get
an inside view on the early developments of those languages.

Furthermore, F.L. Bauer needs special attention because this German
computer scientist has taken up writing history of computer science. Al-
though he writes often about developments where he himself was actively
involved in, he is the only source on the topic of early ALGOL translation
and the developments leading to the initiation of the ALGOL effort. As a
result, his historical works are very useful if they are used with care.

Finally, there are historical papers written on special occasions, like the
ACM Turing Award Lectures and anniversaries, wherein the author looks
back on his personal involvements in the ALGOL effort and computer science.
These articles are interesting because they are able to place other sources in
a historical context and give a more anecdotical view on the matter.

Lacking are sources on the use of the ALGOL languages and the reception
of the ALGOL effort. The exception is the journal Datamation that, although
explicitly American, gives a view on the computing community from a user’s
perspective in industry. It is, however, not enough to reconstruct a realistic
view on the use and reception of ALGOL in Europe or in the USA.

0.1 My own perspective

Besides the perspective in the sources my own perspective is also important to
know. I am a twenty-first century computer scientist with no involvement in
ALGOL at all. Although the language was mentioned in some courses during
my computer science education at the Eindhoven University of Technology,

3

0 Introduction

I do not know the language but by name.
The computer science education in Eindhoven focuses on structured pro-

gramming and designing systems using formal methods. In other words, my
perspective is that of an academic computer scientist rather than that of a
programmer.

Besides studying computer science, I am also studying History at the
University of Utrecht. I am experienced in doing historical research and will
combine my knowledge of computer science with my experience in writing
history to write this history of the ALGOL effort.

0.2 The ALGOL effort: a definition

Finally, I want to clarify the term “ALGOL effort”. The ALGOL effort
did, at first, not exist as an official institution. Later in the development of
the ALGOL effort, it became more official and institutionalised, but at the
start it was just an idea. Some computer scientists wanted to create a new
universal programming language to write algorithms in. The effort that was
undertaken to create this programming language, and everything related to
it, is what I call the “ALGOL effort”.

The ALGOL effort started somewhere in the mid-1950s. Where it ends is
debatable: did it end in 1988 when the last ALGOL Bulletin was published,
or did it end after the maintenance period of ALGOL 60? I have chosen
the publication of the ALGOL 68 report as the end of the ALGOL effort.
After the publication of this report in late 1969 the official developments on
ALGOL did not end. The spirit of the ALGOL effort, however, was broken
with the publication of a Minority Report.3 More than half of the members
of Working Group 2.1 responsible for the development of ALGOL 68 did not
agree with the final result. With this disagreement the idea of an universal
language was no longer part of the ALGOL effort.

0.3 Notes
0ACM Pressroom, ‘Software Pioneer Peter Naur Wins ACM’s Turing Award. Dane’s

Creative Genius Revolutionized Computer Language Design’ (2006), 〈URL: http://campus.
acm.org/public/pressroom/press releases/3 2006/turing 3 01 2006.cfm〉

1ACM, ‘A. M. Turing Award’ (2006), 〈URL: http://awards.acm.org/turing/〉
2J. W. Backus et al., ‘Report on the algorithmic language ALGOL 60’, Commun. ACM 3:5

(1960)
3Dijkstra et al., ‘Minority Report’, ALGOL Bull. 31 (1970)

4

http://campus.acm.org/public/pressroom/press_releases/3_2006/turing_3_01_2006.cfm
http://campus.acm.org/public/pressroom/press_releases/3_2006/turing_3_01_2006.cfm
http://awards.acm.org/turing/

1 Creation
The Start of the ALGOL Effort

The start of the ALGOL effort • The need for a universal algorithmic
language • The difference between the computing community in the USA
and in Europe • Comparing early programming languages: IT, MATH-
MATIC, FORTRAN and IAL • And why IAL did have to be the universal
algorithmic language

1.0 The start of the ALGOL effort

In October 1955, an international symposium on automatic computing was
held in Darmstadt, Germany. In the 1950s, the term “automatic computing”
referred to almost anything related to computing with a computer. During
this symposium ‘several speakers stressed the need for focusing attention
on unification, that is, on one universal, machine-independent algorithmic
language to be used by all, rather than to devise several such languages in
competition.’0

To meet this need the Gesellschaft für Angewandte Mathematik und
Mechanik (GAMM; association for applied mathematics and mechanics) set
up a subcommittee for programming languages. This committee consisted of
eight members: Bauer, Bottenbruch, Graeff, Läuchli, Paul, Penzlin, Rutis-
hauser, and Samelson.1 In 1957, it had almost completed its task; instead of
creating yet another algorithmic language, however, it was decided to ‘make
an effort towards worldwide unification.’2

Indeed, the need for a universal algorithmic language was not felt only in
Europe. Some computer user organisations in the USA, like SHARE, USE,
and DUO also wanted one standard programming language for describing
algorithms. In 1957, they asked the Association of Computing Machinery
(ACM) to form a subcommittee to study such a language.3 In June 1957,
the committee was formed consisting of fifteen members from the industry,
the universities, the users, and the federal government: Arden, Backus, De-
silets, Evans, Goodman, Gorn, Huskey, Katz, McCarthy, Orden, Perlis, Rich,
Rosen, Turanski, and Wegstein.4

5

1 Creation

Before this committee had held any meeting at all, a letter of the GAMM
subcommittee for programming languages was send to the president of the
ACM to propose a joint meeting to create jointly one international algebraic
language5 instead of two different but similar languages. The ACM agreed
and three preparatory meetings were held to create a proposal for the lan-
guage. On the third meeting, held at Philadelphia, 18 April 1958, F.L. Bauer
presented the GAMM proposal to the ACM subcommittee.6 Both proposals
shared many features but the American proposal was more practical than
the European counterpart that was more universal.7

The joint meeting was held at Zürich from May 27 to June 1, 1958, and
was attended by F.L. Bauer, H. Bottenbruch, H. Rutishauser and K. Samel-
son from the GAMM subcommittee and by J. Backus, C. Katz, J. Perlis and
J.H. Wegstein from the ACM counterpart. In the letter from the GAMM to
the ACM where this meeting was proposed, it was stated that, ‘we hope to ex-
pand the circle through representatives from England, Holland and Sweden’.8

In the end, however, the meeting was attended by Americans, Germans and
Swiss only. Nonetheless, international interest was growing, especially after
the publication of the preliminary report on the new language.9

The discussions at the Zürich meeting were based on the two proposals
for the new language and it was decided that:

1. ‘The new language should be as close as possible to standard mathe-
matical notation and be readable with little further explanation.

2. It should be possible to use it for the description of computing processes
in publications.

3. The new language should be mechanically translatable into machine
programs.’10

In addition, the language was to be machine independent. It was designed
with no particular machine in mind.

With these decisions made some problems arose because of the difference
between a publication language and a programming language to instruct
computers. In addition, there was disagreement on the symbols to use. For
example, the decimal point was problematic: the Americans were used to a
period and the Europeans to a comma.11 To solve all these representational
issues Wegstein proposed to define the language on three different levels
of representation: reference, hardware and publication. After this solution
the joint meeting ended successfully with the publication of the Preliminary
Report: International Algebraic Language.12

The Internal Algebraic Language (IAL), or ALGOL 58, as it was called
later, was the result of an international effort to create a universal algorithmic

6

1.1 The need for a universal algorithmic language

language. This short history, however, does not explain why there was a need
for a language like IAL. Or, for that matter, why creating a new language was
preferred over using one of the other already existing algorithmic languages
of that time. To answer these questions, the state of automatic computing in
the 1950s is discussed in the next section. After that, the features of IAL are
discussed and a comparison between IAL and some of the other algorithmic
languages is made. While treating these subjects the differences between the
American and European approaches towards automatic programming and
programming languages in general are treated as well.

1.1 The need for a universal algorithmic language

1.1.0 The American field of computing

The need for a universal algorithmic language was stressed at the Darm-
stadt symposium in 1955. Almost two years earlier, in December 1953, John
Backus proposed the FORTRAN project to his chief at IBM.13 The goal of
this project was to create a language to formulate ‘a problem in terms of
a mathematical notation and to produce automatically a high speed [IBM]
704 program for the solution of the problem.’14 In other words, FORTRAN
was to be an algorithmic language with a practically usable translator: the
programs generated by this system should be as efficient as hand-coded pro-
grams written in machine code or in an assembly language.

The computers of the early 1950s were instructed by using the machine’s
own code, the machine code. To aid the programmer these binary machine
codes were improved: the binary representation of the operations of the com-
puting machine were replaced with meaningful symbols. Later, the operands,
or addresses, of these operations were also transformed. First, the binary
representation of addresses became a decimal representation. The addresses,
however, were to be specified in an absolute manner, and the next improve-
ment was the introduction of relative addressing. Finally, the addressing
itself also became symbolic: many often used memory locations, like regis-
ters, were represented by a symbol. Bit by bit, machine codes evolved into
assembly languages.

Although these assembly languages were an improvement over machine
codes, it was not enough to prevent the programmer from making errors. To
decrease the number of errors, subroutine libraries consisting of useful oper-
ations and program parts were developed.15 New programs could be written
by including these subroutines in the code. Creating complex programs had
now become a much easier task than writing all the code by hand.16

7

1 Creation

Another way to improve programming was using an automatic coding
system. These systems extended a machine with useful features, like floating
point operations and input and output operations, by providing a virtual
machine that was easier to program than the real computing machine.17

The ultimate goal of the research groups creating these automatic coding
systems was to create a language looking ‘like English or algebra, but which
the computer could convert into binary machine instructions.’18

The biggest problem of automatic coding systems was efficiency, or the
lack thereof. Programs generated with these systems were up to five times
less efficient than hand-coded assembly programs.19 This resulted in an atmo-
sphere in which the idea of automatic coding was conceived as fundamentally
wrong: ‘efficient programming was something that could not be automated’20

was an often heard statement. This attitude towards automatic programming
was put aptly by Backus in 1980:

Just as freewheeling weste[r]ners developed a chauvinistic pride
in their frontiership and a corresponding conservatism, so many
programmers of the freewheeling 1950s began to regard them-
selves as members of a priesthood guarding skills and myster-
ies far too complex for ordinary mortals. (...) The priesthood
wanted and got simple mechanical aids for the clerical drudgery
which burdened them, but they regarded with hostility and de-
rision [to] more ambitious plans to make programming accessible
to a larger population. To them, it was obviously a foolish and
arrogant dream to imagine that any mechanical process could
possibly perform the mysterious feats of invention required to
write an efficient program.21

Unfortunately for this priesthood programming did become accessible to
a larger population during the 1950s; hundreds of computers were being
built and used on a commercial basis.22 Programming in assembly language,
including the inevitable debugging, accounted for almost three quarters of the
total cost of running a computing machine.23 This observation was the reason
why Cuthbert Hurd, Backus’s chief at IBM, accepted Backus’s proposal for
the IBM Mathematical FORmula TRANslating system FORTRAN.24

Because automatic coding systems were, in the end, economically more
profitable to use automatic coding became accepted. Using automatic coding
systems would reduce the time spent on programming and debugging; pro-
grammers could spent more time on solving new problems and the computer
could spent more time on running these programs rather than on debugging
them.

8

1.1 The need for a universal algorithmic language

Although many computers were being used for data processing and other
business applications during the late 1950s, scientific computing was and
would be one of the main application areas. As a result, most automatic
coding systems of that time were algorithmic systems. When the attitude
towards automatic coding changed in favour of higher level programming
languages, ‘it almost seemed that each new computer, and even each new
programming group, was spawning its own algebraic language or cherished
dialect of an existing one.’25 This diversity of algebraic languages caused
the need for a universal algorithmic language. A universal language would
enable users of different machines to communicate about programming with
each other and to share their programs.

1.1.1 The European field of computing

The first contribution to programming languages in Europe was made by
Konrad Zuse. In the years 1945–1946, he developed a programming lan-
guage called Plankalkül. This language was far more sophisticated than most
of the languages developed in the 1950s and even 1960s. Among the features
were procedures with input and output parameters, compound statements,
records, control statements, variables, subscripts, and an assignment state-
ment.262728 His work on programming languages, however, was not recog-
nised outside the German-speaking area until 1972.29

In 1934, Zuse started working on computing machines, and he produced
three successive machines before he started with the Z4 machine.30 At the
end of the Second World War, Zuse fled from Berlin to Bavaria with his Z4
computing machine. Because of the war, Zuse was unable to go on with his
work on the Z4 and he started working on several theoretical ideas about
computing and programming, one of these ideas was his Plankalkül.31 Af-
ter the war, the Z4 was rented by the Eidgenössische Technische Hochschule
(ETH) in Zürich and in 1950 it was put into operation.32 Most of the com-
putations performed on the Z4 were numerical calculations for all kind of
complex technical problems, from matrix calculations to computations on a
dam.33

At that time, Heinz Rutishauser was working at the ETH. To make pro-
gramming of the Z4 easier he invented a method to let the computer produce
its own programs. This method was based on the fact that many programs
consisted of repeating sequences of instructions with addresses changing by an
underlying pattern.34 Later, Rutishauser (1952) observed that ‘den Rechen-
plan für eine bestimmte Formel oder Formelgruppe durch die Rechenmas-
chine selbst ”ausrechnen” zu lassen [ist], das heisst die Rechenmaschine [ist]
als ihr eigenes Planfertigungsgerät zu benützen.’35 With “Planfertigungs-

9

1 Creation

gerät” Rutishauser referred to another idea of Konrad Zuse on a code gen-
eration machine or Planfertigungsgerät for his Plankalkül.36

Für j = 1(1)n:

Für i = 1:
Für k = 1: 1

aj−1
ik

= aj
nn.

Für k = 2(1)n: aj
nn × aj−1

1k = aj
n,k−1.

Für i = 2(1)n:

Für k = 1: −aj−1
ik × aj

nn = aj
i−1,n.

Für k = 2(1)n: aj−1
ik − (aj−1

i1 × aj
n,k−1) = aj

i−1,k−1.

Figure 1.0: Example of a program to compute the inversion of matrix a0
ik in

Rutishauser’s language.38

From 1949 till 1951, Rutishauser developed an algebraic language for
an hypothetical computer and two compilers for that language.39 In this
language there was only one control structure: the Für statement. In Figure
1.0 the meaning and use of this statement becomes clear: Für k = 2(1)n:

aj
nn× aj−1

1k = aj
n,k−1. means that for all k from 2 till n (with step 1), the value

of aj
n,k−1 becomes the value of aj

nn multiplied with the value of aj−1
1k .

At the same time and in the same place, Corrado Böhm, although aware
of Rutishauser’s work (not vice versa), was doing similar research. Böhm
also developed an hypothetical machine and a language to instruct that ma-
chine. For the first time, however, the translator itself was written in its own
language.40. In this language everything was a kind of assignment statement.
For example, go to B was encoded as B → π: the value of B is assigned to
the program counter.41

In 1955, Bauer and Samelson decided to start working on formula transla-
tion based on Rutishauser’s work.42 They invented a method to translate for-
mulae based on the stack principle.43 At the end of 1955, after the Darmstadt
symposium, the GAMM subcommittee on programming languages was set
up. The members of this subcommittee, Bauer and Samelson from Münich,
Bottenbruch from Darmstadt, and Rutishauser from Zürich, formed the ZMD
group.44 The proposal for the new algorithmic language created by this group
was influenced by their previous work on programming languages and for-
mula translation. Actually, they developed both language and translation
technique side by side, as will be explained in Section 3.1.

10

1.2 Why was IAL chosen over other algorithmic languages?

1.1.2 The difference between Europe and the USA and the need
for universalism

The situation in Europe was totally different from the situation in the USA.
In Europe the field of computing was just emerging in the late 1950s. In
almost every country of Europe, research centres started with building and
using their own computing machines. In the USA, on the other hand, a com-
mercial computer industry was already selling computers to research centres,
government, and industry.

The computing machines being built in Europe were intended for scientific
computing and, eventually, an algorithmic language was needed to make
these machines productive. In the USA, several algorithmic languages were
already developed and used as a result of this need. Many research groups
had created their own algorithmic language. For almost every computing
machine an algorithmic language, or variant of another language, existed. In
this atmosphere the need for universalism was felt.

When, in late 1958, the report on IAL was published it was received
with great interest from the computing community. During the development
of ALGOL 60 this enthusiasm would only grow: ALGOL was to be the
language of choice for many of the computing machines being built in Europe.
In America, however, the market demanded a working implementation of a
good language, not an academic promise for a better language. During the
development of ALGOL 60 IBM became the dominant player in the computer
industry.45 FORTRAN matured into a usable and efficient language and was
ported to many machines. As a result, FORTRAN became the de facto
standard programming language for scientific computing.

1.2 Why was IAL chosen over other algorithmic lan-

guages?

In 1958, at the Zürich meeting, FORTRAN was not considered to be the
ideal universal algorithmic language; IAL was developed instead. The ques-
tion is: Why did it have to be IAL? Why did FORTRAN, or one of the other
languages, not satisfy the those present at the Zürich meeting? Why creating
a new algorithmic programming language if there were already other algo-
rithmic languages? To answer these questions four algorithmic languages of
the late 1950s are discussed and compared: IT, MATH-MATIC, FORTRAN,
and IAL.

IT and MATH-MATIC are discussed because they did belong, accord-
ing to Jean Sammet, to the group of automatic coding systems which were

11

1 Creation

used more widely.46 Besides, these languages were created, among others,
by respectively C. Katz and A.J. Perlis, both participating in the ALGOL
effort. FORTRAN is chosen because it would become the de facto stan-
dard and J.W. Backus, the leader of the group developing FORTRAN, also
participated in the creation of IAL at the Zürich meeting.

1.2.0 IT

During 1955 and 1956, ideas about an algebraic language and its compiler
for the Datatron computer were developed at Purdue University Computing
Laboratory. Two members of the group, A. Perlis and J.W. Smith moved to
Carnegie Institute of Techology in the summer of 1956. They adapted the
ideas about the language to a new machine, the IBM 650. In October 1956,
the compiler was ready and named Internal Translator (IT).47 According to
Knuth and Pardo (1975) this was ‘the first really useful compiler’48. It was
used on many installations of the IBM 650, and it was even ported and used
on some other machines too.49

Symbol Name Representation

(Left parenthesis L
) Right parenthesis R
. Decimal point J
← Substitution Z
= Relational equality U
> Greater than V
≥ Greater than or equal W
+ Addition S
− Substraction M
× Multiplication X
/ Division D
exp General exponentiation P
, Comma K
” Quotes Q

Type T
Finish F

Figure 1.1: Translation of some of IT’s mathematical symbols.50

Although IT51 was popular, it had some disadvantages. The main prob-
lem was the primitive hardware representation of the language; only alfanu-
meric characters were allowed and many symbols were translated into one
single character. In Figure 1.1, some of the symbols used in IT are paired

12

1.2 Why was IAL chosen over other algorithmic languages?

with their translation into the hardware representation. Variables were writ-
ten as a number of I’s followed by a number, and, in case of floating point
variables, prefixed with a Y or a C. A subroutine was called by its line number
followed by a comma separated list of parameters, and all this together was
put between quotes.

Besides this primitive hardware representation the scanning technique
used was also problematic. This process resulted in incorrect and difficult
evaluation of mathematical expressions52 and it was very time consuming
too.53

IT itself was a simple arithmetic language; it consisted of simple mathe-
matical operators and some basic control structures like selection and a form
of looping. The IF statement was used as: k: G I3 IF (Y1 + Y2) = 9 meaning
that if the value of Y1 + Y2 is equal to 9 then the statement with number
equal to the value of variable I3 is executed, otherwise the next statement
is executed. Every statement was preceded with a number lower than 626
(here represented by k).

The looping construct was written like k: j, v1, v2, v3, v4. Here j is the
number of the last statement of the loop, the loop itself started at statement
k+1. v1 is the looping variable, with starting value v2, step v3 and end value
v4.

reference hardware
1 READ READ F
2 Y2 ← 0 Y2 Z OJ F
3 4, I1, 11, -1, 1 4K I1K 11K M1K 1K F
4 Y2 ← CI1 + Y1 × Y2 Y2 Z CI1 Y1 X Y2 F
5 H H FF

denoting the computation of y =
10∑
i=0

aix
i

Figure 1.2: Example of an IT program.54

In Figure 1.2, an example program written in the IT language is given.
The reference version of the program is a little bit cryptic but it can be
understood. Unfortunately, the hardware representation of the program is
worse than cryptic. The programmer had to translate his programs by hand
into the hardware representation and, as a result, using IT was difficult and
error prone.

13

1 Creation

1.2.1 MATH-MATIC

The language AT-3 was developed by a group headed by Charles Katz at
UNIVAC, starting in 1955. In April 1957, when its preliminary report was
published, the language was renamed to MATH-MATIC.55 The language was
intended for use at the UNIVAC I computer, a computing machine without
floating point operations. For this reason, all floating point computations
had to be done by subroutine calls. Another factor influencing the efficiency
in a negative way was the translation of MATH-MATIC programs into A-3
programs. A-3, itself an extension of A-2, was the third version of a series of
compilers for the UNIVAC I and well known for its inefficiency. This series
of compilers was created by the group headed by Grace Hopper.56.

(1) READ-ITEM A(11) .
(2) VARY I 10 (-1) 0 SENTENCE 3 THRU 10 .
(3) J = I + 1 .
(4) Y = SQR | A(J) | + 5 ∗ A(J)3 .
(5) IF Y > 400, JUMP TO SENTENCE 8 .
(6) PRINT-OUT I, Y .
(7) JUMP TO SENTENCE 10 .
(8) Z = 999 .
(9) PRINT-OUT I, Z .

(10) IGNORE .
(11) STOP .

Figure 1.3: The TPK algorithm in MATH-MATIC.58 The TPK algorithm is
not a useful algorithm, but it is used in Knuth’s and Pardo’s article in which
they compare and discuss different early programming languages.

Although the MATH-MATIC implementation was very inefficient, the
language did have some interesting features. First and foremost, it was very
readable (see Figure 1.3): control statements were written as English words or
phrases and expressions were written in the standard mathematical notation.
Besides basic control statements the language also contained over twenty
input and output statements.59

For each of the relational operators <, >, =, and two combinations of these
operators, there was a different IF statement. There were also five looping
constructs, all variations of the start-step-end variant, and one variation with
a list of values to iterate over.60

The biggest problem for the acceptation of MATH-MATIC was the small
number of UNIVAC machines in use and, hence, the small number of users of
the language. Sammet remarks rightly that this language could have become

14

1.2 Why was IAL chosen over other algorithmic languages?

the standard for scientific computing if it would have been implemented on
a more popular and powerful machine.61

1.2.2 FORTRAN

As said earlier, in December 1953, J.W. Backus proposed FORTAN to his
chief at IBM.62 The idea behind the FORTRAN automatic coding system
was that programs written in FORTRAN would run as efficient as hand-
coded programs in a machine code or in an assembly language.63 Initially
the language was designed for the IBM 704 and some of the statements in
the language reflected this machine directly. For example, the statement IF

(SENSE LIGHT i) n1, n2:64 if sense light i on the IBM 704 is burning, the
next statement executed is n1; in the case the light is off, the next statement
is n2.

Besides these machine dependent statements (there were six of them),
many input and output statements were included. Famous was the FORMAT

statement. With this statement it was possible to define and use formatted
input and output. Among the control statements were an IF statement and
a DO statement. The statement IF (a) n1, n2, n3 denotes that the next
statement executed is respectively n1, n2, or n3 if the value of a is less than,
equal to, or greather than 0. The use of these statements is clarified in Figure
1.4.

C THE TPK ALGORITHM, FORTRAN STYLE
FUNF(T) = SQRTF(ABSF(T))+5.0∗T∗∗3
DIMENSION A(11)

1 FORMAT(6F12.4)
READ 1, A
DO 10 j = 1,11
I = 11 − J
Y = FUNF(A(I+1))
IF (400.0−Y) 4,8,8

4 PRINT 5, I
5 FORMAT(I10, 10H TOO LARGE)

GO TO 10
8 PRINT 9, I, Y
9 FORMAT(I10, F12.7)
10 CONTINUE

STOP 52525

Figure 1.4: Again the TPK algorithm from the article of Knuth and Pardo,
but now written in FORTRAN.66

15

1 Creation

In June 1958, the second version of FORTRAN was released. The main
improvement was the inclusion of subroutines and functions in the language
itself. In addition, programs written in assembly language could be linked
directly into FORTRAN programs. This new version was also made available
on other IBM machines (the IBM 709 and IBM 650 in 1958; the IBM 1620
and IBM 7070 in 1960). In the 1960s, it was implemented on machines
of other manufacturers as well. When the language evolved to FORTRAN
IV it became quite commonplace. Unfortunately, the different FORTRAN
implementations were not always compatible with each other.

1.2.3 IAL

The history of the development of IAL has already been told in Section
1.0. The development distinguished itself from the development of the other
languages because it was created at a meeting by two different committees:
the ACM subcommittee and the GAMM subcommittee. In addition, these
two committees were from different countries, respectively the USA and the
German-speaking countries in Europe. Finally, IAL was designed with no
particular machine in mind, it was machine independent.

One of the most interesting features of IAL was the compound statement.
A sequence of statements separated by semicolons was treated as one state-
ment when it was enclosed by the keywords begin and end. It fitted very
well in combination with control structures like the if statement and the for

statement.
In Figure 1.5 the use of these control structures and the compound state-

ment is exemplified. An if statement is formed as if B, with B a boolean
expression. If B is true, the next statement is executed, otherwise the next
statement is omitted. The for statement is formed accordingly. for i := 0 (1)

N means that to the variable i, the values between 0 and N are assigned it-
eratively. That is, for every value, the statement following the for statement
is executed once.

One of the problems of the language was the total lack of input and output
statements. Because IAL was to be used to describe computational processes
only these statements were considered unnecessary.69 Another problematic
aspect was the way procedures were defined. In Section 2.3 this problem is
explained in more detail.

1.2.4 Why did IAL have to be the international algebraic language?

At the start of this section, the question was asked why IAL did have to be the
universal algorithmic language. After comparing four algorithmic languages

16

1.2 Why was IAL chosen over other algorithmic languages?

Figure 1.5: An example IAL program taken from the Preliminary Report:
International Algebraic Language.68

this question can be answered.

First of all, IT, MATH-MATIC, and FORTRAN were machine dependent.
One of the goals of the ALGOL effort was to create a machine independent
language. Of course, one of the already existing language could have been
used as a basis for a new machine independent language.

FORTRAN was, by far, the most used language due to the dominance of
IBM in the computing industry. Exactly this dominance was the reason for
the American subcommittee to ignore the existence of FORTRAN. Choosing
FORTRAN as basis for their proposal would only increase the dominant
position of IBM.70 Ironically, FORTRAN would become the de facto universal
algorithmic language in the early 1960s.

Second, both IT and MATH-MATIC had some serious problems. IT did
not satisfy because of its its primitive hardware representation. The language
was too cryptic to be usable as the universal algorithmic language; one of the

17

1 Creation

initial goals of IAL was that it should resemble standard mathematical no-
tation as much as possible. MATH-MATIC, on the other hand, satisfied this
requirement very well, it was a neat language. Most of its statements were
less machine dependent than the statements in FORTRAN and it had good
input and output facilities. Unfortunately, MATH-MATIC’s implementation
was very inefficient and the language was not very well known; the number
of UNIVAC installations and, because of that, the number of MATH-MATIC
systems and users was just too small.

Finally, and most importantly, the Europeans had no reason whatsoever
to choose an American language as the basis for their proposal. Actually,
the result of the Zürich meeting would be a combination of the American
and European proposals. As both subcommittees did not choose an exist-
ing American programming language the universal international algorithmic
language had to be a new language.

The new language, however, shared most of its features with the already
existing languages. There was a widespread agreement on the typical ele-
ments that should be included in an algorithmic language: algebraic expres-
sions and control structures like selection and a looping construct.

The reason why IAL did have to be the universal algorithmic language
was not that the other languages were bad, they just did not satisfy the
requirements for an international and universal language.

1.3 Conclusion

This chapter started with a short history on the start of the ALGOL effort.
In the middle of the 1950s, there was a need for a universal algorithmic
language and in both the USA and the German-speaking countries of Europe
a committee was set up to create a proposal for such a language. In 1958,
at the Zürich meeting, these proposals were combined into a new language,
called IAL. Although this history seemed to be complete, some questions can
be asked: why was there a need for a universal algorithmic language and why
did it have to be IAL?

The answer to the first question can only be given by describing the
differences between USA and Europe. In the USA the field of computing be-
came a professional field in the 1950s. There was a computer industry selling
computers to companies, the government and some research centres. In this
commercial atmosphere it became clear that problem-oriented programming
languages were needed to make profitable use of computers.

Unfortunately, these programming languages were not accepted by many
programmers because they were slow and generated inefficient programs.

18

1.4 Notes

It was believed that creating efficient programs could not be automated.
J.W. Backus, however, did believe that this was possible, and he proposed
the FORTRAN system to his chief at IBM. Indeed, this system would eventu-
ally generate programs that ran almost as efficiently as hand-coded programs.
Because problem-oriented languages were seen as a necessity, many research
groups and computer companies started creating such languages. This devel-
opment resulted in a huge diversity of similar languages and in this situation
the cry for universalism arose.

In Europe, the situation was different. The field of computing was emerg-
ing, and in many countries the first computers were being built in the late
1950s. The main application for these machines was scientific computing.
Instructing these computers was a difficult and error prone task. To solve
this problem, work was started on formula translation and eventually on an
algorithmic language. After the international Darmstadt symposium in 1955,
Rutishauser, Bauer, Samelson, and Bottenbruch started working on an algo-
rithmic language. Instead of creating yet another algorithmic language, they
proposed to jointly create an international algebraic language to the ACM.

Both the Americans and the Europeans did not base their proposal on an
already existing language. IT and MATH-MATIC were not sufficient or well
known. FORTRAN, on the other hand, was well known, but the Americans
wanted to undermine the dominance of IBM. Hence, the ACM subcommittee
proposed a new language. The combination of the two proposals became IAL:
a new algorithmic language like other algorithmic languages.

The reason why IAL did have to be the international algebraic language
was not that it was better than the other programming languages, but that
it was machine independent and a compromise between two computing com-
munities with the potential to become part of a truly international effort.

1.4 Notes
0Heinz Rutishauser, Description of ALGOL 60, volume 1, edited by F. L. Bauer et al.

(Springer-Verlag, 1967), p. 5
1Peter Naur, Transcripts of Presentations, in: HOPL-1: The first ACM SIGPLAN

conference on History of programming languages (New York, NY, USA: ACM Press, 1978),
pp. 148, Frame 3

2Rutishauser, Description of ALGOL 60 , p. 5
3R. W. Bemer, ‘A Politico-Social History of Algol’, in: Mark I. Halpern and Christo-

pher J. Shaw, editors, Annual review in automatic programming, volume 5 (London: Perg-
amon, 1969), p. 160

4Alan J. Perlis, The American side of the development of Algol, in: HOPL-1: The first
ACM SIGPLAN conference on History of programming languages (New York, NY, USA:
ACM Press, 1978), pp. 4–5

19

1 Creation

5Bemer, ‘A Politico-Social History of Algol’, p. 160
6Perlis, ‘The American side of the development of Algol’, p. 5
7Rutishauser, Description of ALGOL 60 , p. 5
8Bemer, ‘A Politico-Social History of Algol’, p. 161
9Rutishauser, Description of ALGOL 60 , p. 6

10A. J. Perlis and K. Samelson, ‘Preliminary Report: International Algebraic Language’,
Commun. ACM 1:12 (1958), p. 9

11Perlis, ‘The American side of the development of Algol’, p. 6
12Perlis and Samelson, ‘Preliminary report: IAL’
13John Backus, The history of FORTRAN I, II, and III, in: HOPL-1: The first ACM

SIGPLAN conference on History of programming languages (New York, NY, USA: ACM
Press, 1978), p. 166

14Programming Research Group IBM, ‘Preliminary Report – Specifications for the IBM
Mathematical FORmula TRANslating System FORTRAN’, Technical report (New York:
IBM, 1954), 〈URL: http://community.computerhistory.org/scc/projects/FORTRAN/
BackusEtAl-PreliminaryReport-1954.pdf〉, p. 1

15Martin Campbell-Kelly, Computer: a history of the information machine (Basic-
Books, 1996), p. 186

16Jean E. Sammet, Programming languages : history and fundamentals, Series in Auto-
matic Computation (Englewood Cliffs, N. J.: Prentice-Hall, 1969), pp. 3–4

17Backus, ‘The history of FORTRAN I, II, and III’, p. 165
18Campbell-Kelly, Computer: a history of the information machine, p. 187
19Backus, ‘The history of FORTRAN I, II, and III’, p. 165
20ibid.
21Idem, ‘Programming in America in the 1950s – Some Personal Impressions’, in: N.

Metropolis, J. Howlett and Gian-Carlo Rota, editors, A History of Computing in the
twentieth century (Academic Press, 1980), pp. 127–128

22Saul Rosen, ‘Programming Systems and Languages. A Historical Survey’, in: Idem,
editor, Programming systems and languages (London: McGraw-Hill, 1967), p. 3

23Backus, ‘The history of FORTRAN I, II, and III’, p. 166
24Campbell-Kelly, Computer: a history of the information machine, p. 188
25Perlis, ‘The American side of the development of Algol’, p. 4
26Friedrich L. Bauer, ‘Between Zuse and Rutishauser – The Early Development of Dig-

ital Computing in Central Europe’, in: N. Metropolis, J. Howlett and Gian-Carlo Rota,
editors, A History of Computing in the twentieth century (Academic Press, 1980), p. 514-
515

27Konrad Zuse, ‘Some Remarks on the History of Computing in Germany’, in: N.
Metropolis, J. Howlett and Gian-Carlo Rota, editors, A History of Computing in the
twentieth century (Academic Press, 1980), pp. 620–627

28F. L. Bauer and H. Wössner, ‘The ‘Plankalkül’ of Konrad Zuse: a forerunner of today’s
programming languages’, Commun. ACM 15:7 (1972)

29Donald E. Knuth and Luis Trabb Pardo, ‘Early Development of Programming Lan-
guages’, in: Jack Belzer, Albert G. Holzman and Allen Kent, editors, Encyclopedia of
Computer Science and Technology, volume 7 (Marcel Dekker INC., 1975), p. 425

30Zuse, ‘Some Remarks on the History of Computing in Germany’, pp. 611–612
31Knuth and Pardo, ‘Early Development of Programming Languages’, p. 424
32H. R. Schwarz, ‘The Early Years of Computing in Switzerland’, Annals of the History

of Computing 3:2 (1981), p. 121
33ibid., pp. 123–125

20

http://community.computerhistory.org/scc/projects/FORTRAN/BackusEtAl-Preliminary Report-1954.pdf
http://community.computerhistory.org/scc/projects/FORTRAN/BackusEtAl-Preliminary Report-1954.pdf

1.4 Notes

34ibid., p. 125
35H. Rutishauser, ‘Automatische Rechenplanfertigung bei programmgesteuerten Rechen-

maschinen’, Z. Angew. Math. Mech. 32:3 (1952), p. 312
36Bauer, ‘Between Zuse and Rutishauser’, p. 516
37Rutishauser, ‘Automatische Rechenplanfertigung bei programmgesteuerten Rechen-

maschinen’, p. 313
38ibid.
39Knuth and Pardo, ‘Early Development of Programming Languages’, pp. 438–439
40ibid., p. 440
41ibid., p. 443
42K. Samelson and F. Bauer, The ALCOR project, in: Gordon and Breach, editors,

Symbolic languages in data processing: Proc. of the Symp. organized and edited by the
Int. Computation Center, Rome, 26-31 March 1962 (New York, 1962), p. 207

43Friedrich L. Bauer, From the Stack Principle to ALGOL, in: Manfred Broy and
Ernst Denert, editors, Software pioneers : contributions to software engineering (Berlin:
Springer, 2002), pp. 30–33

44ibid., p. 34
45Kenneth Flamm, Creating the Computer (The Brookings Institution, 1988), p. 102
46Sammet, Programming languages : history and fundamentals, p. 134
47Knuth and Pardo, ‘Early Development of Programming Languages’, pp. 474–475
48ibid., p. 475
49Rosen, ‘Programming Systems and Languages. A Historical Survey’, p. 7
50Sammet, Programming languages : history and fundamentals, p. 139
51This text about IT is, unless stated otherwise, based on: ibid., pp. 139–143
52ibid., p. 139
53Rosen, ‘Programming Systems and Languages. A Historical Survey’, p. 7
54This example does (probably) contain errors, however, it is taken as it is from: Sam-

met, Programming languages : history and fundamentals, p. 141
55Knuth and Pardo, ‘Early Development of Programming Languages’, p. 479
56ibid., pp. 452–455
57ibid., p. 479
58ibid.
59Sammet, Programming languages : history and fundamentals, p. 136
60ibid.
61ibid., p. 137
62Backus, ‘The history of FORTRAN I, II, and III’, p. 166
63ibid., p. 167
64The text of this section is, unless stated otherwise, based on: Sammet, Programming

languages : history and fundamentals, pp. 143–172
65Knuth and Pardo, ‘Early Development of Programming Languages’, p. 478
66ibid.
67Perlis and Samelson, ‘Preliminary report: IAL’, p. 22
68ibid.
69Sammet, Programming languages : history and fundamentals, p. 175
70Rosen, ‘Programming Systems and Languages. A Historical Survey’, p. 10

21

2 Notation
From IAL to ALGOL 60

Why notation matters? • The description of early languages: FOR-
TRAN and IAL • Backus’s notation to describe IAL • Used as basis
for the definition of ALGOL 60 • The ALGOL 60 report • And the
language ALGOL 60

2.0 Why notation matters?

Communication between the members of the various working groups on as-
pects of the new algorithmic language was important because the ALGOL
effort was an international effort consisting of different people and groups. A
clear and unambiguous understanding of the language in all its facets by all
members participating in the effort was necessary to be able to develop and
discuss the ALGOL language. Using English or any other natural language
to describe a programming language was, and is, insufficient. Natural lan-
guages are too ambiguous to define formally or even describe a programming
language completely.

A description of a programming language consists of a description of two
related aspects of the language: the syntax and the semantics. The syntax
of a language is about how to form a string in the language. The semantics
is about the meaning of syntactically correct strings in the language. The
most obvious way to define formally the semantics is an implementation of
the language on some machine. This implementation then fixes the meaning
of the language.

Such an implementation is not a workable description of a language. A
typical implementation is too large to be understood easily. Often it is writ-
ten in some low level programming language or even assembly language. In
addition, a compiler is written for a particular machine for which the details
should be known to understand the details of the implementation.

Fortunately, describing the syntax formally appeared to be an easier task
than describing the semantics of a language. During the development of AL-

22

2.1 Notations used to describe early programming languages

GOL a formal notation was invented to describe the syntax of ALGOL. This
notation, or metalanguage, was not complete or perfect but it fulfilled its task
to prevent the occurrence of many ambiguities in the discussions about AL-
GOL. Although the new notation was primarily intended for describing the
syntax, the semantics were not completely ignored. Actually, the description
of the semantics was mixed in with the description of the syntax.

Usually a special notation to describe the syntax also influences the lan-
guage concepts to be described. Some language concepts are more easily
described in one notation than in an other one. A formal notation will result
in more coherent and simple concepts: the notation forces the concepts to
be described along the rules of the notation.

In this chapter, both the development of the notation used to describe
the syntax and semantics of ALGOL and the development of the language
concepts of ALGOL 60 are discussed. To that end, the notation used for
describing FORTAN and IAL is explained first. After that the focus is on
the first stage of the development of the notation: Backus’s notation. The
third topic is the notation of the ALGOL 60 report. Finally, the development
of some problematic programming language concepts in ALGOL, especially
that of the procedure concept, are treated in more detail.

2.1 Notations used to describe early programming lan-

guages

The notations used to describe the early programming languages were, like
the languages they described, primitive. During the ALGOL effort this no-
tation was developing into an important aspect of the field of programming
languages. Actually, one of the results of this effort was a way to define
programming languages: do it as it was done in the ALGOL 60 report.

To describe this development of notation, the notation used before the
ALGOL effort is explained and compared to the notation used to describe
IAL. This comparison answers the question if this development of notation
started during or before the ALGOL effort. In other words: Was the nature
of the ALGOL effort responsible for this development of notation?

2.1.0 The notation of IAL and FORTRAN compared

In 1954, the first document describing FORTRAN0 was published: Prelimi-
nary Report – Specifications for the IBM Mathematical FORmula TRANslating
System FORTRAN.1 Two years later, at 15 October 1956, a more finalised

23

2 Notation

version of the language was published.2 The notation used in this later doc-
ument was the same as in the preliminary report; the notation to describe
a programming language had not changed fundamentally during these two
years.

Figure 2.0: The description of real numbers in the FORTRAN report.3

As was the case with FORTRAN, the first publication of IAL was also
a preliminary report: Preliminary Report: International Algebraic Language4.
Actually, both preliminary reports do resemble each other in the sense that
both documents were set up in a similar way. To compare the notations used
in both reports, the descriptions for some language elements are given and
compared.

Figure 2.1: The description of real numbers in the IAL report 6, here G is a
string containing digits only.

Real numbers in IAL (Figure 2.1) are described using a pattern reflecting
the form of a real number. Compared to the description of real numbers in
FORTRAN (Figure 2.0), where only natural language is used, the form of a
number is more obvious.

24

2.1 Notations used to describe early programming languages

Figure 2.2: Part of the description of expressions in the IAL report.7

A more complicated language construct was the expression. Again, in IAL
(Figure 2.2) patterns are used to clarify the form of an expression whereas
in FORTRAN (Figure 2.3) natural language is used. The difference between
the two notations is much smaller than before: a pattern is used in both
descriptions. In IAL’s description this pattern is more explicit, however.

Figure 2.3: Part of the description of expressions in the FORTRAN report.9

The ‘permissible binary operations’ were described earlier and include the
normal ones.

The notations used for statements were also alike. For example, the if

statement is described in both preliminary reports with a pattern (compare
Figure 2.5 with Figure 2.4). Although this version of FORTAN did not
have that much declarations, the description of declarations was more or less
similar with those in the IAL report. In a later version of FORTRAN more
declarations were added to the language.

Figure 2.4: Part of the description of the if statement in the IAL report.10

In short, the notation used to describe FORTRAN was similar to the
notation used to describe IAL. In the description of FORTRAN natural lan-
guage was used more often than in the description of IAL. The general form

25

2 Notation

Figure 2.5: Part of the description of the if statement in the FORTRAN
report.12

of a language element was described with a pattern in both descriptions.
These patterns were the basis of the description of IAL. This was probably
the influence of the European part of the designing committee. As we have
seen before, the Europeans tended more to logic and mathematics than the
Americans did.

2.1.1 The quality of IAL’s notation

The notations used to describe both FORTRAN and IAL were similar. This
does not say anything about the quality of the notation, however. The ques-
tion is: Was this notation sufficient to describe a programming language
formally and completely? To answer this question, a closer look at IAL and
its notation is taken.

Even for simple language elements, like algebraic expressions, IAL’s nota-
tion was not good enough. In Figure 2.2 a part of the definition of algebraic
expressions using this notation is given. An algebraic expression E has sim-
ply one of the forms occurring on the right hand side of the “∼” symbols.
Although it is assumed that the operators in this definition do have the
‘conventional meaning,’13 this definition is ambiguous and it does not say
anything about operator precedence, nor about associativity.

When defining an element with an unknown number of subelements or

26

2.1 Notations used to describe early programming languages

Figure 2.6: Part of the definition of the compound statement.14

when there are constraints on the occurrence of some subelements this nota-
tion was problematic. Take, for example, the compound statement (Figure
2.6). The pattern of this compound statement is a number of statements
between the begin and end keywords. At first glance, this seems to define
this compound statement completely.

Unfortunately it is not clear if it was possible to have a compound state-
ment containing no statements at all, only one statement, or even two state-
ments. After all, there are three “Σ” symbols in the pattern describing the
compound statement. The use of “· · ·” in itself may be clear and completely
understandable for most of the readers of the report; those readers were al-
most all used to read mathematical texts in which these shortscripts occurred
often. It does, however, not describe formally and fully what should occur
on those “· · ·”.

This compound statement consists of a number of unconstrained elements
only and the use of “· · ·” would be acceptable if the only meaning was zero
or more times the repeated element. Unacceptable for a formal notation are
constraints on the elements in a pattern added outside the pattern using
natural language.

As an example, part of the definition of the procedure declaration is
given in Figure 2.7. Here the “· · ·” are used not only to denote zero or more
occurrences of one element denoted by a single symbol, it has three different
meanings in the same pattern:

1. One or more occurrences of a procedure signature. The procedure sig-
nature itself consisted of more than one symbol and a part of unknown

27

2 Notation

Figure 2.7: Part of the definition of procedure declarations.15

length, namely the parameter part of the procedure signature. Actually
the part =: (Po) is optional.

2. Zero or more occurrences of a declaration about the input and output
parameters defined in the procedure signatures.

3. Zero or more occurrences of two different elements: statements Σ and
declarations ∆. These different elements can be mixed in any order.
For every procedure signature, however, there should be a label identi-
cal to the procedure identifier preceding minimally one statement. In
addition, each procedure must have a return statement and all output
parameters should have an assignment statement assigning the value
to output the result.

This early notation to describe programming languages was not suitable
to define a language like IAL fully and formally. To be able to do so was
necessary because IAL was intended to be machine independent: IAL was

28

2.2 Backus’s notation

to be implemented on various machines by different people. According to
Backus (1959): ‘there must exist a precise description of those sequences of
symbols which constitute legal IAL programs.’16 But, ‘heretofore there has
existed no formal description of a machine-independent language’.17 For this
reason, Backus started to work on such a formal description.

2.2 Backus’s notation

At the UNESCO International Conference on Information Processing, held
at Paris from 15 till 20 June 1959, J.W. Backus presented The syntax and
semantics of the proposed international algebraic language of the Zurich ACM-
GAMM Conference18 about a formal description of the syntax of IAL. To be
able to describe the syntax formally he invented a new metalanguage based
on Emile Post’s production system.19 This notation became known as the
Backus Normal Form and later as the Backus Naur Form,20 it is, however,
best known by its abbreviation BNF.

Using this notation, the syntax of a language could be described by “pro-
duction rules”. Each rule was of the shape <metalinguistic variable> :≡ pattern.
A pattern was built up from metalinguistic variables and symbols of the lan-
guage. All possible patterns for a metalinguistic variable were connected
with the or symbol, denoting a choice between the different patterns for the
metalinguistic variable.

〈digit〉 :≡ 0 or 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9

〈integer〉 :≡ 〈digit〉 or 〈integer〉 〈digit〉

Figure 2.8: The formal definition of integers and digits using Backus’s nota-
tion.22

A simple example of the application of Backus’s notation is the description
of integers (Figure 2.8). A digit is clearly a number, or better, a symbol
representing a number, between 0 and 9. An integer is now built up from
these simple digits: it is either one simple digit, or it is a integer followed by
a simple digit, like 9237.

Another simple and clear example is the description of arithmetic expres-
sions. Comparing Figure 2.2 with Figure 2.9, it is immediately clear that
the latter is a less ambiguous description than the former description. Using
his notation Backus was able to denote the operator precedence by split-
ting up the description of expressions into different parts: factors, terms and
expressions.

29

2 Notation

〈factor〉 :≡ 〈number〉 or 〈function〉 or 〈variable〉 or 〈subscr var〉 or (〈ar exp〉) or
〈factor〉 ↑ 〈ar exp〉 ↓

〈term〉 :≡ 〈factor〉 or 〈term〉 × 〈factor〉 or 〈term〉 / 〈factor〉
〈ar exp〉 :≡ 〈term〉 or + 〈term〉 or − 〈term〉 or 〈ar exp〉 + 〈term〉 or 〈ar exp〉 − 〈term〉

〈ar exp A〉 :≡ 〈ar exp〉
〈relation〉 :≡ < or > or ≤ or ≥ or = or 6=
〈rel exp〉 :≡ (〈ar exp〉 〈relation〉 〈ar exp A〉)

Figure 2.9: The formal definition of arithmetic expressions using Backus’
notation.24

〈param list〉 :≡ 〈param〉 or 〈param list〉, 〈param〉

Figure 2.10: The formal definition of a parameter list.25

Some other problems with the older notation were also solved by this new
notation: the use of “· · ·” to denote the occurrence of an element a (unknown)
number of times was not needed any more. In Backus’s notation, it was
possible to use recursion and, hence, to specify that an element could occur
a number of times. In Figure 2.10 the use of this recursivity is made clear
by describing a parameter list: a parameter list is either just one parameter,
or it is a parameter list followed by a comma and one parameter.

Choice could be denoted by using the or connective: write two patterns,
one with the element of choice and one without it. Both recursion and choice
were used to describe procedure statements (Figure 2.11). Unfortunately,
Backus was not able to write down a formal, clear and understandable de-
scription of the procedure statement. Even using his new notation, Backus
had to write down some remarks about the statement using natural language
to complete the formal description; the procedure statement was too diffi-
cult to describe formally. In addition, the description of the declaration of
procedures was not included at all.

The new notation was an huge improvement over the one used earlier.
Nonetheless, it was improved further by Peter Naur. He replaced or by | and
:≡ by ::=. With this, and with the use of complete words for metalinguis-
tic variables instead of using abbreviations of the same words as did Backus,
Naur improved the readability of the description.26 The most important con-
tribution of Peter Naur to Backus’s notation, however, was the fact that he
used it in the ALGOL 60 report.27 Only after the publication of that report
the BNF became more widely known. Before the publication it appeared to

30

2.3 Developing ALGOL 60

〈oe〉 :≡ 〈left element〉
〈out list〉 :≡ 〈oe〉 or 〈outlist〉, 〈oe〉
〈suc〉 :≡ 〈label〉 or 〈id〉 [〈exp〉]

〈succr list〉 :≡ 〈suc〉 or 〈succr list〉, 〈suc〉
〈A〉 :≡ =:(〈out list〉) or 〈blank〉
〈B〉 :≡ :(〈succr list〉) or 〈blank〉

〈proc stmt〉 :≡ 〈function〉 〈A〉 〈B〉 or 〈id〉 =:(〈outlist〉) 〈B〉 or 〈id〉:(〈succr list〉)
〈ppol〉 :≡ 〈blank〉 or 〈ppol〉 〈oe〉,
〈pol〉 :≡ 〈ppol〉 or 〈pol〉, or 〈pol〉, 〈oe〉
〈A’〉 :≡ =:(〈pol〉)
〈ppsl〉 :≡ 〈blank〉 or 〈ppsl〉 〈suc〉,
〈psl〉 :≡ 〈ppsl〉 or 〈psl〉, or 〈psl〉, 〈suc〉
〈B’〉 :≡ :(〈psl〉)
〈F∗〉 :≡ 〈function〉 or 〈pure function〉 or 〈id〉
〈A∗〉 :≡ 〈A〉 or 〈A’〉
〈B∗〉 :≡ 〈B〉 or 〈B’〉

〈pure procedure〉 :≡ 〈pure function〉 〈A∗〉 〈B∗〉 or 〈F∗〉 〈A’〉 〈B∗〉 or 〈F∗〉 〈A∗〉 〈B’〉

[a pure procedure may have any of the forms of a procedure statement but at least one position

of one existing list must be empty; at least one input parameter position or one output position

or one successor position].

Figure 2.11: The formal definition of the procedure statement.30

Peter Naur that Backus’s description of IAL ‘was received with a silence that
made it seem that precise syntax description was an idea whose time had not
yet come’.28 Naur ‘thus proved the usefulness of the idea in a widely read
paper and it was accepted’.29

2.3 Developing ALGOL 60

During the eighteen months between the meeting in Zürich and the next
joint meeting on the international algebraic language, held in Paris, Jan-
uary 1960, the name of the language had changed from the ‘”unspeakable”
and pompous acronym, IAL’31 to ALGOL. Furthermore, the language was
discussed among interested people from America and various countries of
Europe. In these months the ALGOL effort became a truly international
effort, but it was still a separated effort. The main development took place
at different meetings and in correspondence between members of the various

31

2 Notation

subcommittees. The official communications channels of the development,
however, were the Communications of the ACM in the USA and the ALGOL
Bulletin in Europe.

Most of the American proposals were related to practical aspects of the
language. They wanted to improve the language by extending it, by adding
more types, and by adding input and output facilities. Another suggestion
to improve the language was to tidy up the syntax a bit.32 This practical
attitude to the ALGOL effort was a result of the state of programming in
the USA: programming was becoming a professional field and the experience
gained with existing programming languages provided a good feedback to
the ALGOL effort.

The European proposals were often focused on the procedure concept
and the scopes of variables.33 The Europeans aimed to improve the language
fundamentally and the main target was the difficult procedure concept in
IAL. Both in the preliminary report on IAL and in Backus’s description
of IAL this procedure concept could not be described fully and formally in
the notation used. Aside from this notational problem, other problems with
IAL’s procedure concept were also noted and discussed.

The discussions on the procedure concept focused mainly on parameters.
E.T. Irons and F.S. Acton (1959) sum up some problems with IAL’s param-
eters in A proposed interpretation in ALGOL34. Parameters could occur in the
procedure body at the left hand side of an assignment statement. When the
procedure was called these parameters in the body were replaced with the
argument supplied for that parameter. If an argument was not an assignable
element (i.e. not a variable) it would result in undefined behaviour. Another
problem mentioned was the use of one argument as both an input and an
output parameter. Actually, one parameter could also be used as both an
input and an output parameter.35

These problems with the procedure concept were resolved by various sub-
committees at the final meeting in Paris. First, the distinction between input
and output parameters was removed.36 This solved a number of problems
but not all of them. Eventually, under great time pressure, the distinction be-
tween call-by-name (enabling the so-called Jensen’s device) and call-by-value
was invented.37 Every occurrence of a call-by-name parameter in the body
of a procedure was being substituted by the name of the argument supplied
to the procedure for that parameter. If a parameter was called by value,
however, then the value of the argument was assigned to all occurrences
of the corresponding parameter in the procedure body. This call-by-name
parameter concept was one of the most controversial features of ALGOL 60.

Another issue at the Paris meeting was recursion. Recursive procedures
were new in 1960 and the usefulness of it was not widely recognised. The

32

2.3 Developing ALGOL 60

Figure 2.12: The formal description of the ALGOL 60 procedure declara-
tion.39

proposal to add the recursive keyword to the language to denote a recur-
sive procedure was rejected.40 When ALGOL 60 was published, however, it
appeared that there was no restriction on the occurrence of calls to a pro-
cedure in its own procedure body. Without anyone knowing recursion was
added to the language. According to Bauer (1978), this was the result of
‘the Amsterdam plot in introducing recursivity.’41

At the end of the meeting the procedure concept had become a clear
concept. The formal description of the declaration of a procedure is given
in Figure 2.12. As said earlier, Backus (1959) did not define the procedure
declarations formally, but he did describe procedure statements (Figure 2.11,
page 31). The description of procedure statements in the ALGOL 60 report
consists of just six subparts. Backus, on the other hand, needed seventeen
subparts for the same task. Using the BNF to define ALGOL 60 had a
beneficial effect on the procedure concept and ALGOL 60 as a whole.

Figure 2.13: The formal description of the ALGOL 60 procedure statement.43

Besides the types Boolean, integer, real, and array of those types, the

33

2 Notation

string type was added to ALGOL 60. It could only be used as an actual
parameter in procedures, however. Proposals to add extra types like com-
plex numbers and lists, were rejected. Furthermore, IAL’s assignment state-
ment was extended into a multiple assignment statement: assignments like
a := b := c := 9 were now also allowed.44

The compound statement introduced in IAL was extended and it became
a special case of the block concept. In a block, variables, functions, and even
procedures can be declared local to the scope of the block. These declarations
are only known in the block they are declared in and in all subblocks. They
are not known, however, in the encapsulating block. A compound statement
was now a block without any declarations. Blocks could be nested to any
particular level.45

Figure 2.14: The formal description of the ALGOL 60 arithmetic expres-
sions.47

The case-like statement from IAL was removed and replaced by the else

clause in the if statement and conditional arithmetical and Boolean expres-
sions.48 In Figure 2.14 the description of the arithmetic expression is given,
including this conditional expression. An example of the use of a conditional
expression is: a := if (b < 23) then b + 23 else b − 21;. To the variable a the
value b + 23 is assigned if b < 23, else the value b − 21 is assigned.

In Figure 2.15 one of the example programs in the ALGOL 60 report is
given exemplifying many of the programming language concepts discussed
above.

The meeting in Paris was attended by Bauer, Naur, Rutishauser, Samel-
son, Vauquois, van Wijngaarden, and Woodger from Europe and by Backus,
Green, Katz, McCarty, Perlis, and Wegstein from the USA. The seventh
American member, Turanski, had died even before the meeting and was not
present. According to Perlis (1978), ‘The meetings were exhausting, inter-
minable, and exhilarating. (...) diligence persisted during the entire period,
The chemistry of the 13 was excellent. (...) Progress was steady and the

34

2.4 Developing ALGOL 60

Figure 2.15: The first example program in the ALGOL 60 report.49

output, Algol60, was more racehorse than camel.’50

The difference between IAL and ALGOL 60 was huge. Instead of ‘just
adding a few corrections to ALGOL 58, it was necessary to redesign the
language from the bottom up.’51 In addition, the editor of the ALGOL
60 report, Peter Naur, used a changed version of Backus’s notation. The
use of the BNF was beneficial for the clean structure of the report. Peter
Naur became the editor because he had prepared a draft of the language
for the Paris meeting. According to Bauer (1978), the participants of the
conference were surprised by Naur’s work. ‘It therefor sounds poetic if he
has written that his draft Report was ‘chosen’ as the basis of the discussion;
the Committee was simply forced to do so’.52

The result of the meeting, the ALGOL 60 report, ‘was a fitting display for
the language. Nicely organised, tantalisingly incomplete, slightly ambiguous,
difficult to read, consistent in format, and brief, it was a perfect canvas
for a language that possessed those same properties. Like the Bible it was
meant, not merely to be read, but to be interpreted.’53 And although the
ALGOL 60 report and the formal notation used in it were frightening many
people at first, the ALGOL 60 report would become the standard for defining
programming languages.

35

2 Notation

2.4 Conclusion

A formal notation to define a programming language is important to allow
everyone to read and interpret the definition in the same way. During the
development of ALGOL 60, the notation used to describe the ALGOL lan-
guages changed fundamentally.

The notation to describe early programming languages like FORTRAN
and IAL was natural language combined with some patterns denoting the
form of the various language elements. The disadvantage of this notation
was that it resulted in ambiguous descriptions. Even for simple language
elements, like numbers, expressions, and simple control structures, this was
problematic. For definition of complex structures, like the procedure state-
ment and declarations, the notation was totally insufficient. The description
of IAL’s procedure concepts was long and incomplete because of the use of
the “· · ·” symbol.

To give a more formal and complete description of the syntax of IAL,
Backus invented a new notation: the Backus Normal Form. Using this simple
notation, complex structures in the language could be described formally.
Unfortunately, the procedure concept of IAL was too complex to describe in
this notation. So we can conclude that either the notation was insufficient
or the procedure concept in itself was wrong.

During the period between the definition of IAL and ALGOL 60, many
proposals to improve ALGOL were made. One of the main topics, especially
in Europe, was the complex procedure concept. In the ALGOL 60 report
the procedure concept was simplified: input and output parameters were
removed, call-by-name and call-by-value parameters introduced. Another
important aspect of the new language was the notion of a block with its
own scope. This block was an extension of the compound statement from
IAL. Recursion was a new feature added without anybody knowing it; the
proposal to add recursion explicitly was rejected.

The ALGOL 60 report was edited by Peter Naur. He wrote the draft
version and used a slightly modified version of Backus’ notation to describe
the language. This draft was used as the basis for the ALGOL meeting. The
final report would become the standard method of defining programming
languages and Backus’ notation became the standard method to describe
the syntax of programming languages.

In this short period, the ALGOL effort became a major contributor to the
field of programming languages. Examples of contributions include the BNF,
a method to define a programming language, the block structure, recursive
procedures, call by name, call by value, the block, the scope, etc.

36

2.5 Notes

2.5 Notes
0In this section, FORTRAN should be read as FORTRAN I as described in Section

1.2.2.
1IBM, ‘Preliminary Report FORTRAN’
2J.W. Backus et al., ‘The FORTRAN Automatic Coding System for the IBM 704

EDPM : Programmer’s Reference Manual’, Technical report (Applied Science Division and
Programming Research Department, International Business Machines Corporation, 1956),
〈URL: http://community.computerhistory.org/scc/projects/FORTRAN/704 FortranProgRefMan
Oct56.pdf〉, p. 1

3IBM, ‘Preliminary Report FORTRAN’, p. 3
4Perlis and Samelson, ‘Preliminary report: IAL’
5ibid., p. 11
6ibid.
7ibid., p. 12
8IBM, ‘Preliminary Report FORTRAN’, p. 6
9ibid.

10Perlis and Samelson, ‘Preliminary report: IAL’, p. 14
11IBM, ‘Preliminary Report FORTRAN’, p. 14
12ibid.
13Perlis and Samelson, ‘Preliminary report: IAL’, p. 12
14ibid., pp. 13–14
15ibid., p. 19
16John W. Backus, The syntax and semantics of the proposed international algebraic

language of the Zurich ACM-GAMM Conference., in: IFIP Congress (1959), p. 129
17ibid.
18ibid.
19Backus, ‘Programming in America in the 1950s – Some Personal Impressions’, p. 132
20Donald E. Knuth, ‘backus normal form vs. Backus Naur form’, Commun. ACM 7:12

(1964), p. 736
21Backus, ‘The syntax and semantics of the proposed international algebraic language

of the Zurich ACM-GAMM Conference.’, p. 129
22ibid.
23ibid., p. 130
24ibid.
25ibid.
26Backus, ‘Programming in America in the 1950s – Some Personal Impressions’, p. 133
27Knuth, ‘backus normal form vs. Backus Naur form’, p. 736
28Backus, ‘Programming in America in the 1950s – Some Personal Impressions’, p. 133
29ibid.
30Backus, ‘The syntax and semantics of the proposed international algebraic language

of the Zurich ACM-GAMM Conference.’, p. 130
31Perlis, ‘The American side of the development of Algol’, p. 6
32Idem, Transcripts of Presentations, in: HOPL-1: The first ACM SIGPLAN conference

on History of programming languages (New York, NY, USA: ACM Press, 1978), p. 144
33Idem, ‘The American side of the development of Algol’, p. 9
34E. T. Irons and F. S. Acton, ‘A proposed interpretation in ALGOL’, Commun. ACM 2:12

(1959)
35ibid., p. 14

37

http://community.computerhistory.org/scc/projects/FORTRAN/704_FortranProgRefMan_Oct56.pdf
http://community.computerhistory.org/scc/projects/FORTRAN/704_FortranProgRefMan_Oct56.pdf

2 Notation

36Naur, ‘Transcripts of Presentations’, p. 147
37ibid., pp. 157–158
38J. W. Backus et al., ‘Report on the algorithmic language ALGOL 60’, Numerische

Mathematik 2:1 (1960), pp. 128–129
39ibid.
40Perlis, ‘Transcripts of Presentations’, p. 159
41ibid., p. 160
42Backus et al., ‘Report on ALGOL 60’, p. 124
43ibid.
44Perlis, ‘The American side of the development of Algol’, p. 10
45Sammet, Programming languages : history and fundamentals, p. 193
46Backus et al., ‘Report on ALGOL 60’, p. 114
47ibid.
48Peter Naur, The European side of the last phase of the development of ALGOL 60,

in: HOPL-1: The first ACM SIGPLAN conference on History of programming languages
(New York, NY, USA: ACM Press, 1978), p. 23

49Backus et al., ‘Report on ALGOL 60’, pp. 130–131
50Perlis, ‘The American side of the development of Algol’, pp. 11–12
51Rutishauser, Description of ALGOL 60 , p. 7
52As remarked by Bauer in: Naur, ‘European side of development of ALGOL 60’, p. 41
53Perlis, ‘The American side of the development of Algol’, p. 12

38

3 Translation
From Craftsmanship to Science

From craftsmanship to science • With ALGOL as a catalyst • Start-
ing with sequential formula translation • Implementing procedures and
recursion • And the influential structure of ALGOL 60

3.0 From craftsmanship to science

It is easy to point to ALGOL 60 and herald this language as the main stimulus
for the emerging field of translator writing in computer science. Is this image
of ALGOL 60 and the ALGOL effort as the catalyst to the development of
the field of translator writing true? And if so, what part of the ALGOL effort
was the most influential, and why?

In the 1960s ALGOL 60 was, especially in the academic world, an in-
fluential language. In the same period the field of translator writing was
developing with big leaps. A chronological order, however, does not mean
a causal order per sé. More importantly, the field of translator writing was
not new. As mentioned before (see Section 1.1), there was already experi-
ence with the implementation of algebraic languages. This experience was,
on the other hand, more practically oriented and lacked a sound theoretical
fundament.

Most of these early efforts to create and implement algebraic languages
were isolated efforts. Many different research groups and corporations were,
independently of each other, creating their own languages. Publication of the
results was rare, using each other’s work even more rare. Of course, there was
communication between the different groups at symposia and conferences,
for example. This contact, however, did not result in the development of a
common theory of translation. The field of translator writing was a field of
best practices and craftsmanship.

In the early 1960s, this situation would change drasticly. An article writ-
ten by F.L. Bauer and K. Samelson, Sequential formula translation0, about a
translation technique used in their IAL translator was widely read and was

39

3 Translation

often cited in subsequent articles on the translation of ALGOL 60 and trans-
lation of algebraic languages in general. It seemed that this article was the
one sheep that was followed by many others.

One of the first to cite and use Bauer and Samelson’s article was E.W. Di-
jkstra in his 1960 article Recursive Programming 1. In this article, Dijkstra
presented a solution for the implementation of one of the most controversial
features of ALGOL 60: recursive procedures. He had developed this solution
while he was working, together with J.A. Zonneveld, on an ALGOL 60 trans-
lator for the Electrologica X1 at the Mathematical Centre in Amsterdam.

This translator was important because it was the first complete ALGOL
60 translator, only the use of the own concepts was somewhat restricted.2 In
August 1960, ten months after the start of the project the translator was put
into use.3 Only some months after the publication of the ALGOL 60 report,
Dijkstra and Zonneveld proved that ALGOL 60 could be implemented in an
efficient way.

In 1961, Dijkstra published two articles on the making of this translator:
An ALGOL 60 Translator for the X1 4 and Making a Translator for ALGOL
60.5 These article were also often cited and used by others. In these years,
publication and referring to each other’s work became more and more the
norm.

In 1962, the lack of a unifying theory in the field of translator writing
would be solved by Ginsburg and Rice in Two Families of Languages Related
to ALGOL6. In this article they connected a theory about different types of
languages from theoretical linguistics with programming languages. From
then on, formal languages became an intrinsic part of the field of translator
writing. Eventually, theory, practice, experience, and research would lead to
the development of powerful translation techniques and tools to do much of
the work that, in the early 1960s, costed several man-years to complete.

In these years, the field of translator writing became a scientific field,
and in this chapter, it is argued that the ALGOL effort was the catalyst to
this transformation. To that end, the translation of algebraic expressions, in
particular the technique pulished by Bauer and Samelson, is discussed first
because it was the basis for both the language IAL and the development of
many ALGOL translators.

Given this translation technique, basically three approaches to the trans-
lation of ALGOL 60 were taken: extending the technique, improving the
technique, and, unrelated to the technique, developing other translation tech-
niques. First, the approach of extending the technique is treated with the
description of two articles about the implementation of procedures in AL-
GOL. With the treatment of procedures the most intriguing aspects of the
ALGOL language are discussed: the procedure concept as such, recursion,

40

3.1 Sequential formula translation

call-by-value parameters, and call-by-name parameters.

The other two approaches towards the translation of ALGOL 60 are
treated together because both were based on the structure of the definition
of ALGOL 60 or the structure of the BNF. Some articles on the translation
of ALGOL 60, published before 1962, are discussed in a more or less chrono-
logical order to give a good view of these approaches and the evolving field
of translator writing.

Of course, after the publication of Two Families of Languages Related to
ALGOL by Ginsburg and Rice (1962) there were many more developments
in the field of translator writing. The focus in the field, however, shifted
from translating ALGOL to translating ALGOL-like languages and even to
the general problem of translation. Nonetheless, ALGOL 60 would often be
the prime example or the first application of certain techniques and theories.
And, long after 1962, ALGOL 60 translators were being build and improve-
ments in techniques were being made. The field of translator writing stood
on its own, free from the ALGOL effort and for the topic of this chapter,
these later developments related to the translation of ALGOL are, though
interesting, less relevant.

3.1 Sequential formula translation

During the 1950s, many algorithmic languages were invented and imple-
mented. Eventually, a more general technique to translate algebraic formulae
was developed independently by different people.7 Due to the isolated nature
of these early efforts and the lack of publications,8 this technique was not
widely known.

In March 1959, J.H. Wegstein was the first to publish this technique in a
scientific journal. In From formulas to computer oriented language11, Wegstein
described the translation technique in less than three pages containing two
tables and a huge flow-diagram (see Figure 3.0). This article did not gain
much attention, probably due to the date of publication.

Some months later, in November 1959, Bauer and Samelson published
their version of the technique as Sequentielle Formelübersetzung 12 in Elektro-
nische Rechenanlagen, a new German scientific journal. Although this article
was widely read in Europe, it would be the translated version published in
early 1960 in the Communications of the ACM which became truly influential.
Their Sequential formula translation13 was referred to in almost all publica-
tions related to the translation of ALGOL and translation in general in the
early 1960s.

As Bauer and Samelson were not the first to publish nor the only ones to

41

3 Translation

Figure 3.0: Wegstein’s implementation of the sequential translation technique
described in a flow-diagram.10

42

3.1 Sequential formula translation

develop this translation technique, the question arises: Why did their article
and translation technique gain so much more attention and why was it so
influential? Before answering this question, it must be said that only Bauer
himself has written some historical papers about his and Samelson’s work on
this translation technique and the developments leading to the publication of
it. Unfortunately, no one else has written about Bauer and Samelson’s work
nor about any of the other people developing a similar technique. Nonethe-
less, Bauer’s historical publications on this translation technique are, if used
with care, an opportunity to describe the development of this technique in
more detail.

3.1.0 The development of the sequential formula translation tech-
nique

Based on their early work on the STANISLAUS, a device to check a valuation
of a propositional formula, Bauer and Samelson started in 1955 on a technique
to translate arithmetic formulae.14 They worked this technique into a design
for a simple calculator (See Figure 3.1)15, as we will now describe.

Formulae can be entered into the calculator using a keyboard. Numbers
and operators are separated. The former go directly into the number stack
(Numbers Cellar). Incoming operators are compared to the topmost operator
on the operator stack (Operations Cellar) using the precedence orders in
Figure 3.2: If the order of the incoming operator is lower than the order of
the operator on the stack then the new operator is pushed onto the stack; If
the orders are equal, the incoming operator is evaluated by the computer; If
the order of the incoming symbol is greater than the operator on the stack,
the latter is evaluated by the computer.

The computer component performs the evaluation of an operator using
the topmost numbers on the number stack and the result is pushed back onto
the number stack. When the end of an expression is reached, the result of
the evaluation of the expression is available as the topmost element of the
number stack and can then be printed.

As an example, the evaluation of the expression (3 + 5) × (−2 + 4) is
described in Figure 3.3. Initially, the number stack contains a 0 for the
purpose of computing the unary operators + and −. If the number stack
becomes empty during a computation, the number 0 is again pushed onto
the stack for the same reason. The evaluation of the expression is performed
sequentially, that is, like “how the expression is read”, thus from left to right.
The state of the calculator is given by the contents of the number stack, the
operator stack and the current input symbol. The symbol ⊥ denotes the end

43

3 Translation

Figure 3.1: A diagram of the simple calculator designed by Bauer and Samel-
son in the 1950s.17 They called a stack a cellar.

order incoming operator topmost operator
0 (
1 ×,÷ ×,÷
2 +,− +,−
3) (

Figure 3.2: The precedence orders used in the simple calculator.18

44

3.1 Sequential formula translation

of the stack.

expression (3 + 5) × (− 2 + 4)
operation stack ⊥ ((+ + (⊥ × (− − + + (× ⊥

⊥ ⊥ ((⊥ ⊥ × ((((× ⊥
⊥ ⊥ ⊥ × × × × ⊥

⊥ ⊥ ⊥ ⊥
number stack 0 0 3 3 5 8 8 8 0 0 2 −2 4 2 2 16

⊥ ⊥ ⊥ ⊥ 3 ⊥ ⊥ ⊥ 8 8 0 8 −2 8 8 ⊥
⊥ ⊥ ⊥ 8 ⊥ 8 ⊥ ⊥

⊥ ⊥

Figure 3.3: Evaluation of (3+5)×(−2+4) on the simple calculator developed
by Bauer and Samelson.20

In 1956, Bauer, Bottenbruch, Rutishauser, and Samelson started a joint
project to create an algebraic language and translator for different computing
machines in Zürich (ERMETH), München (PERM) and Darmstadt, form-
ing the so called ZMD group. Later, when Bauer and Samelson moved to
Mainz (Z22), this group became known as the ZMMD group.21 The first
GAMM proposal for the international algebraic language was based on the
technique used in the simple calculator described above. At the Zürich meet-
ing, Bottenbruch presented a working compiler for their proposed language.
It appeared that the method of translation presented was much more elab-
orated than the methods known and used by the Americans.22 As we have
seen earlier, however, Wegstein did know this technique, as did others. The
question is: Did he get the idea of the technique on this meeting or was it
developed independently by himself? Given the two totally different descrip-
tions of the same technique, it is reasonable that he indeed did develop the
same technique independently from Bauer and Samelson.

The origin of the block structure in ALGOL can also be found in the
ZMMD effort. It was proposed by Samelson because it was a natural exten-
sion of the stack principle of their translation technique.23 Unfortunately,
the compromise resulting from the Zürich meeting was less focused on the
stack principle.24 In ALGOL 60, however, the block structure would be one
of the basic elements of the language, but now not originating from the stack
principle, but from the highly structured definition of the language created
by Peter Naur.

After the definition and publication of IAL, the ZMMD group adapted
their compilers. Already in 1958, they had working translators for their
various machines.25 In June 1959, the ICIP conference took place in Paris
where Bauer and Samelson presented their translation technique. After this
presentation, the ZMMD group expanded into the ALgol COnverteR group

45

3 Translation

(ALCOR). Computer manufactures, research centres and universities from
Europe and even one from the USA joined the core group in Germany. All
the members got the same information about the ZMMD translators and
started working on their own compilers.26

Meanwhile, Bauer and Samelson published their technique in the Com-
munications of the ACM. The explanation for the influence of this article is
twofold. First of all, the translation technique described was the basis of
Bauer and Samelson’s proposal for IAL and later ALGOL. As a result, this
technique was extremely suitable for translating ALGOL.

The second part of the explanation lies in the moment of publication. It
was published some months before the publication of the ALGOL 60 report.
This report generated much interest in ALGOL and as a result in the trans-
lation of ALGOL. People starting writing their own translators for ALGOL
60 had a suitable basis to start from: the technique described in Bauer and
Samelson’s article.

3.1.1 Sequental formula translation explained

In Sequential Formula Translation, Bauer and Samelson (1960) described the
translation technique used by the ALCOR group for their IAL translators.
The basis of the technique was still the same as in the design of the simple
calculator (see above): incoming symbols are postponed till the first moment
they can be evaluated, or in this case, translated. Incoming operators are
compared with the topmost operator in the stack using a matrix defining
the action to be taken given an incoming symbol and a topmost symbol.
The main difference between the design of the calculator and the technique
described in this article was that the calculator was to be a device and the
translator was a computer program for a general purpose computer.

The technique is explained with an example. In Figure 3.4 the algebraic
expression (a × b + c × d)/(a − d)+ b × c is translated. The translator uses
a symbol stack, initially it is empty. The program that is generated uses
a number stack to calculate (subparts of) the expression. In this example,
the generated program is an ALGOL 60 program, normally it would be an
assembly program. array N is the number stack. Instead of using a stack
pointer, the values of that stack pointer are used directly for explanatory
purposes. Otherwise, operations on the stack would look like N[n] := b; and
the stack pointer (here n) would be incremented and decremented when an
element is pushed onto the stack or removed from the stack, respectively.

For simple arithmetic expressions this method was clear, however, IAL
consisted of more than just simple arithmetic expressions. Other parts of
IAL were translated in a similar way: postponing symbols till they can be

46

3.1 Sequential formula translation

symbol stack next symbol resulting program
[] (
[(] a N[0] := a;
[(] ×
[(,×] b N[1] := b;
[(,×] + N[0] := N[0] × N[1];
[(,+] c N[1] := c;
[(,+] ×
[(,+,×] d N[2] := d;
[(,+,×]) N[1] := N[1] × N[2];
[(,+] N[0] := N[0] + N[1];
[(]
[] /
[/] (
[/, (] a N[1] := a;
[/, (] −
[/, (,−] d N[2] := d;
[/, (,−]) N[1] := N[1] − N[2];
[/, (] N[0] := N[0] ÷ N[1];
[/]
[] +
[+] b N[1] := b;
[+,×] ×
[+,×] c N[2] := c;
[+] ⊥ N[1] := N[1] × N[2];
[+] N[0] := N[0] + N[1];
[]

Figure 3.4: The translation of (a× b+ c× d)/(a− d)+ b× c⊥. This example
is taken from Bauer and Samelson’s article and is slightly adapted to make
it more understandable.28

47

3 Translation

evaluated and translated. For example, the brackets delimiting a compound
statement, begin and end were treated like arithmetic parenthesis. The end

keyword takes care of evaluating all the remaining symbols on the stack till
the begin symbol is reached.

More problematic were the if and for statements. Remember, Bauer and
Samelson’s article was about translating IAL: the if statement is like if B; S

and the for statement like for v := L; S. The ; is the syntactical end of the
statement, but it is not the semantical end: effectively, S belongs to the
statement.

In the translation of if B;0S;1 the if symbol is removed from the stack on
the encounter of ;0. The target address for the case B = true is known at this
point in the translation, however, the target address for the case B = false is
still unknown. To solve this problem, an auxiliary if symbol is introduced
during the translation which will be removed on encounter of ;1 when the
target address for the case B = false is known. In other words, during the
translation ;0 is treated as a kind of then symbol.

for v := L0, L1, · · ·, Ln; S

is translated into:

v ’[0] := L0; v1[1] := L1; · · ·; v’[n] := Ln;

for i := 1 (1) k; begin v := v ’[i] ; S end

Figure 3.5: Translation of a list-of-values variant for statement.

The list-of-values variant for statement was translated into equivalent
substatements (see Figure 3.5). The translation of a start-step-end-variant
for statement goes as in Figure 3.6. Of course, if the step is negative, the if

statement would test the opposite. In case the sign of the step is unknown at
compile time, it has to be decided at run time, and the code to decide that,
is added too.

The translation of other elements in the IAL language, like declarations
and procedures, were treated as straightforward. For example, procedures
were translated as mere subroutines. One element of IAL, however, did
get more attention: the array. The translation of subscripted variables was
not simple. Although Bauer and Samelson treated only static arrays, the
computing of the addresses for these subscripted variables needed much ex-
planation. Actually, memory management was one of the hot items in the
field of translator writing in these days. The translation of ALGOL 60, espe-
cially the implementation of recursion, procedures, and dynamic sized arrays,
stimulated the development of dynamic memory management.

48

3.2 Implementing procedures and recursion

for v := Ei (Es) Ee; S

where Es is positive, is translated into:

v := Ei; s := Es ; e := Ee;

LS : S; v := v + s; if v ≤ e; goto LS ; v := v − s;

Figure 3.6: Translation of a start-step-end variant for statement.

3.2 Implementing procedures and recursion

3.2.0 “Solving” by ignoring

The publication of the ALGOL 60 report was not the start of implementa-
tion of ALGOL languages. For example, in the USA different projects were
started to implement algebraic languages, like MAD, NELIAC, and JOVIAL.
All these languages were based on IAL, that is, it was not an implementation
of IAL itself, but IAL was used as a set of guidelines for their own algebraic
languages. In Europe, as said earlier, the ZMMD group was building trans-
lators for their proposals for IAL and later for the final draft of IAL too.

Although there was experience with translating IAL-like languages, the
translation of ALGOL 60 was different from the translation of IAL in two im-
portant ways. First of all, there were some elements of ALGOL 60 which were
new and these elements were not seen as useful or understood completely.29

In particular recursion, the procedure concept, dynamic sized arrays and own

variables were problematic and led to the development of dynamic storage
allocation.

Second, the amount of interest generated by ALGOL 60 was much bigger
than generated by IAL. Many more implementations were started after the
publication of the ALGOL 60 report than were started after the publication
of the report on IAL.

The ALCOR group started an implementation of ALGOL 60 based on
their translator for IAL. Instead of implementing the new programming lan-
guage concepts, however, they decided to ignore these difficult features. Con-
ditional boolean expressions, conditional designational expressions, the while

part in the for statement, own declarations and recursive procedures were
not part of the early ALGOL 60 translators of the ALCOR group.

Instead of focussing on implementing the whole language the ALCOR
group tried to maximise intercompatibility between the computers of the
members of the ALCOR group. All members used the same hardware rep-
resentation and most of them also used the same translation technique as
described above. The translation matrix controlling the method was given

49

3 Translation

to all the members to assure that the same semantics were implemented at
all the different installations. As a result, programs written for one member’s
computer could run on all member’s computers.30 Later, their translators be-
came more feature complete, but the pioneers of implementing these features
were working outside the ALCOR group.

Ignoring difficult or useless features was not uncommon. According to a
questionaire in the ALGOL Bulletin no. 9, the own declaration was almost
always omitted.31 Outside the ALCOR group, more than half of the compil-
ers did not include variable size arrays.32 Interestingly, all the non-ALCOR
compilers in this questionaire did include procedures.33 Either they did not
mention recursion or it was fully implemented.

Although recursion was not implemented by the ALCOR group, it was
one of the new interesting and controversial concepts in ALGOL 60. As
said before, many people did not see why it would be useful at all. Others,
however, did see the theoretical importance of the concept.34 In 1960, two
articles on the implementation of recursive procedures were published.

3.2.1 Dijkstra’s Recursive Programming

The first and most influential article of the two was Recursive Programming 35

by E.W. Dijkstra. It was published in the second issue of Numerische Math-
ematik in 1960. As said before, his implementation of recursive procedures
was developed during the development and implementation of the ALGOL 60
compiler for the Electrologica X1 at the Mathematical Centre in Amsterdam.

Dijkstra based his method of implementing recursion on the translation
technique of Bauer and Samelson because it was ‘well known (...) and so
elegant that we could not refrain from trying to extend this technique by
consistent application of its principles.’36 Actually, he made the observation
that it does not matter if an simple expression is evaluated or that an ex-
pression containing a procedure call is evaluated. Both evaluations will use
the next free places on the stack to compute the resulting value. Hence,
procedures can be treated like expressions with keeping some extra adminis-
tration.

The translator uses the stack for computing intermediate results only.
Values needed are pushed onto the stack and are used when a subexpression
can be computed. Then, the values used are removed and replaced by the
value of the expression. However, when a procedure is called the parameters
and local variables of the procedure are pushed onto the stack. Because these
elements must be accessible later, access to elements deeper down in the stack
is needed. For this reason a more elaborated stack was needed instead of the

50

3.2 Implementing procedures and recursion

simple stack used for calculating simple expressions.
The program text is stored in memory, instruction after instruction this

program is executed, using the stack to compute intermediate results. When
a procedure is called, the normal flow of instructions changes because the
static program text of the procedure is located somewhere else in memory.
Furthermore, the dynamic part of the procedure is pushed onto the stack.
This dynamic part consists of the parameters, the local variables and the
link data. This link data defines the state of the execution of the program in
which the procedure is called, and is used to return back to the normal flow
of the program where it was when the procedure was called.

The execution of the procedure program text also uses the stack in the
same way the main program did: for computing intermediate results and
for calling procedures. This execution starts on the first free place on the
stack, directly after the places where the parameters and local variables of
the procedure are stored. If another procedure is called, the same thing hap-
pens, the current situation is stored as part of the call and is pushed onto the
stack with the dynamic data of the new procedure. This procedure is then
executed. When the execution ends, the old situation of the previous proce-
dure is restored, and execution of that older procedure goes on. Eventually,
this procedure is also finished, the state of the main program is restored and
execution of the program goes on. Of course, more than two procedures can
be called, even recursively.

As part of the link data, a block number is stored to be able to access
global variables with respect to this block. Initially, the block number is zero.
In addition, two parameter pointers, a return address and the stack pointer
are stored as part of the link as well. This approach was also used to execute
blocks. These were treated as procedures without any parameters or return
value.

3.2.2 The solution of Irons and Feurzeig

Another way of implementing procedures was published in 1960 by E.T. Irons
and W. Feurzeig in Comments on the Implementation of Recursive Proce-
dures and Blocks in Algol-60.37 Where Dijkstra only used text to describe
his method of implementing recursive procedures, Irons and Feurzeig were
also using flow diagrams to exemplify things. They treated blocks, proce-
dures, and the goto statement together because these concepts change the
normal flow of execution of a program. Again, the translation of both proce-
dures and blocks are more or less similar. The way of handling blocks is just
somewhat simpler because less information has to be checked and stored.

The procedures and blocks are handled by special entrance (see Figure

51

3 Translation

Figure 3.7: The flow diagram for procedure entry and control in the article
of Feurzeig and Irons about recursive procedures.39

52

3.3 Implementing procedures and recursion

3.7) and exit (see Figure 3.8) routines which are executed by entering a block
(or procedure) and by exiting them. Procedures are treated as blocks where
the return link and thunk link are stored as local variables. Thunks are
a way to get the address of a parameter into a standard location, regard-
less the parameter type.40 Interestingly, J. Jensen and Peter Naur (1961)
give in An implementation of ALGOL 60 procedures41 a more or less similar
implementation of handling different parameters in procedures.

Furthermore, three pointers are used to point to the current active block:
block exit points to the exit routine, block bottom points to the lowest mem-
ory address of the active block and block top points to the highest memory
address of the active block. These pointers are comparable to the procedure
pointers in the link data used by Dijkstra.

Figure 3.8: The flow diagram for procedure exit in the article of Feurzeig
and Irons about recursive procedures.43

Instead of a block number, however, there is a recursion counter. For
every procedure c(proc) denotes the recursion depth. Initially, the recursion
counter is −1. Because procedures can be recursive and blocks can not, this
counter is used for procedures only.

Both methods of implementing recursion were very similar. When a block
is executed, the current situation is stored, local variables, including param-
eters, are pushed onto the stack and the exectution of the block starts. By
the end of the execution, the old situation is restored. As for the handling
of procedure parameters, here too, both Jensen and Naur’s, and Ingerman’s
method are very similar. The extensions to the technique to implement the
more difficult concepts in ALGOL 60 were more or less straightforward and
fitted easily into the technique of sequential formula translation.

53

3 Translation

3.3 The influence of ALGOL’s structure

Besides extending the common translation technique, two other approaches
to the translation of ALGOL were undertaken. These approaches, improving
the existing translation techniques and inventing new translation techniques,
are now discussed.

Although most of the efforts in these approaches started differently the
focus was the same: on the structure of the language or the structure of
the notation used to describe the language. The highly structured definition
of ALGOL 60 in the ALGOL 60 report combined with the use of the BNF
caused a growth in interest in syntax of programming languages and the
structure of translators. As a result, several syntax directed translators and
translation techniques were developed.

The ideal was a program that, given a definition of a language in a met-
alanguage like BNF extended with some semantical information, could gen-
erate a translator. One such a translator was developed by Brooker and
Morris for the ATLAS computer. This ‘Assembly Program for a Phrase
Structure Language’4445, however, was developed outside of the ALGOL ef-
fort. Nonetheless, Brooker and Morris may have influenced some of the sci-
entists discussed below because of the many publications on their translation
program.

In January 1961, the issue of the Communications of the ACM was ded-
icated to the translation of algorithmic languages. From the seven articles
on the translation of ALGOL, two were on the translation of ALGOL in re-
lation to the structure of ALGOL 60 itself: Recursive Processes and ALGOL
Translation46 by A.A. Grau and A Syntax Directed Compiler for ALGOL 60 by
E.T. Irons.

3.3.0 Grau’s recursive translation technique

In his article, A.A. Grau improved the translation technique described by
Bauer and Samelson by reducing the size of the translation matrix. This
matrix, as said earlier, defined the action to be taken given an incoming
symbol and the topmost symbol on the stack. Because ALGOL 60 consisted
of many symbols this matrix was large. Given the small amount of memory
computing machines were equipped with in those days, this was problematic,
especially for the many small scale computers in use in Europe.

An important aspect of ALGOL’s description was its recursive definition.
Grau tried to reflect this recursive structure on the translator: if there is a
statement, it should be translated by a statement procedure, a expression by

54

3.3 The influence of ALGOL’s structure

an expression procedure, etc. However, because statements can be recursive,
a procedure must be able to call itself. So the translator itself should be
recursive. In fact, the translator only translates blocks because blocks are the
basic elements of an ALGOL 60 program. All other elements are translated
by dedicated procedures called by this block procedure.

These recursive procedures are called when the translator reaches a state
when the with the procedure corresponding elements are expected. For exam-
ple, if the translator is in a state where an arithmetic expression is expected,
and the next input symbol is an if symbol, then the translator pushes, ac-
cording to the definition of the ALGOL 60 arithmetic conditional expression:

〈arithmetic expression〉 ::= if 〈boolean expression〉 then 〈simple ae〉
else 〈arithmetic expression〉

the next state onto the stack, that is the then-part state and calls the
boolean expression procedure. After translating the boolean expression, the
top most element of the stack will be this then-part state.

The description of Grau’s technique is difficult to understand because
Grau (1961) used recursive procedures which were to be implemented using a
stack. In his technique the recursive descent parsing technique can, however,
already be recognised.

3.3.1 Irons’s syntax directed compiler

Another approach to the problem of translating ALGOL, independent of the
techniques used in the ALCOR group, was one developed by E.T. Irons and
published as A Syntax Directed Compiler for ALGOL 60 47 in 1961. Later,
in 1963, an extended version of the article was published as The Structure
and Use of the Syntax Directed Compiler 48. According to Irons, the problem
of early compilers was that the function of translation of the language and
the function of definition of the language were mixed into one program. He
wanted to separate the two functions by using an extended metalanguage to
define a programming language and a general translator program to translate
programs written in that newly defined programming language using the
definition of that language.

This metalanguage consists of a set of rules defining both syntax and
semantics. These rules have the form syntax =:: S→ {semantics}. S, a syntactic
unit, is the subject of the rule. The syntactical part of the rule consists
of syntactical units, similar to the BNF. The semantical part is a list of
semantical definitions which can have three different forms: symbols in the
output language, substitution of output symbols for other output symbols,
and functions on output symbols.

55

3 Translation

The translator works by using definitions, as described above, to translate
a program text into the target language. Starting at the bottom, from left
to right, syntactic units are recognised and the semantic rules are applied till
an topmost element is recognised and no further steps can be taken.

In March 1962, Robert S. Ledley and James B. Wilson published Automatic-
Programming Language Translation Through Syntactical Analysis49, describing
an approach to the general problem of translation based on the work of Irons
(1961). The metalanguage used by Irons was changed a bit: the syntacti-
cal element of the rule is put in front, followed by the syntactical part and
then the semantical part. In addition, the semantical part was made more
understandable. The underlying technique, however, was the same.

3.3.2 Lucas’s structure of formula translators

In September 1961, P. Lucas published The Structure of Formula - Transla-
tors50 in the ALGOL Bulletin supplement number 16. He, as did Grau (1961),
based his work on Bauer and Samelson and tried also to improve the tech-
nique by reducing the translation matrix. Although the technique was devel-
oped while implementing an ALGOL 60 translator51, the article had a more
general claim: it presented a technique for algebraic translators in general.

Using three levels of meta language: the object language, the language
used in the ALGOL 60 report, and a generalised version of the same lan-
guage using Greek letters between double angular brackets, a new language
was defined. This third level metalanguage is used to describe patterns of
elements in the second level metalanguage. For example, the pattern under-
lying < integer >::=< digit > | < digit >< integer > is << β >>::=<< α >>

| << α >><< β >>.

Lucas now distinguished three types of syntactical definitions: enumer-
ations, juxtapositions and combined definitions. In all three groups there
are two variations: explicit and recursive definitions. Enumerations have the
form << χ >>::=<< α0 >> | << α1 >> | << α2 >> | · · · << αn >> and form
a so called syntactic category. The lefthand side variable can be replaced by
one of the variables on the right hand side.

The juxtaposing definition looks like << χ >>::=<< α0 >><< α1 >><<

α2 >> · · · << αn >>. The left hand side variable may be replaced by the
whole right hand side. The combination group is, of course, a combination
of the other two groups.

A definition is explicit if a left hand side variable does not occur in any
(sub)part of a right hand side variable. In recursive definitions, however, left
hand side variables does occur in the right hand side variables or subparts of

56

3.3 The influence of ALGOL’s structure

Figure 3.9: The structure of a translation procedure of an enumerating defi-
nition.53

Figure 3.10: The structure of a translation procedure of a juxtaposing defi-
nition.55

57

3 Translation

it. Lucas does denote this with cont(<< χ >>, << α >>), that is, << α >>

does occur in << χ >>.

Lucas presented for every group of definitions the structure of the transla-
tion procedure. In Figures 3.9 and 3.10 the program structure of respectively
enumerating and juxtaposing definitions are presented. A rounded box de-
notes the question: Is the incoming symbol the element inside the box? If so,
that element is translated, indicated by a box with the name of the element
in it.

In fact, first is tested if the expected element is indeed found. If so,
the translation procedure of that element is called. These two Figures give
the explicit structure. If a definition is recursive, the structure changes as
expected: a loop is introduced. The whole translator consists of recursive
procedures calling each other according to the structure of their definitions.
Of course, some extra administration is added to the structure of the pro-
cedures. In essence, however, this is the whole technique. Here too, as in
the case of Grau (1961), the later recursive descent parsers can already be
recognised.

3.3.3 Connecting ALGOL-like languages with context-free lan-
guage theory

Interestingly, both Grau (1961) and Lucas (1961) arrived at similar ideas
when they both try to improve the translation technique of Bauer and Samel-
son. The same happened in the case of Dijkstra (1960), and Feurzeig and
Irons (1960) with implementing procedures and also with Jensen and Naur
(1961) and Ingerman (1961) with their implementation of the different types
of parameters in procedures. Somehow, independent from each other, the
same developments were made. This can be a sign of an immature scientific
infrastructure. On the other hand, it can also be a sign of how well the
translation technique, theory and language fitted together.

In addition, the terminology and notation used was not consistent through-
out the different articles. That is another sign of the evolving field of trans-
lator writing: a common basis had to be found. One big step towards a
common base was made by Ginsburg and Rice (1962). They wanted to get
more knowledge about programming languages because these languages were
becoming more and more important for instructing computers. To that end,
they abstracted from ALGOL and developed two models of similar program-
ming languages: definable languages and sequentially definably languages.56

The former are languages defined by the BNF where all left-hand side ele-
ments are metalinguistic variables. This set of languages are equal to the type

58

3.4 Conclusion

2 languages defined by Noam Chomsky in 1956: the context-free languages.

As a result, Ginsburg and Rise (1962) not only tried to formalise ALGOL-
like languages, they also made the connection between programming lan-
guages and theoretical linguistics. This connection turned out to be a fruitful
one. The field of formal languages, the definition of programming languages,
and translation became a very popular one. Soon after the publication of
Two Families of Languages Related to ALGOL in 1962, publications in the field
of translator writing became more and more theoretical.

With this formalisation the field of programming languages could be fit
into the theory of computing and automata theory, developed in the 1940s
and 1950s.57 In other words, the practice gained with programming comput-
ers and with programming languages could be based on a theoretical foun-
dation. The field of computing became a real science in the sense that it got
its own theoretical component connecting practice and theory: theoretical
computer science.

3.4 Conclusion

This chapter started with the question what part of the ALGOL effort was
the most influential. The answer lies in the fact that the ALGOL effort
was a catalyst for the field of translator writing: it transformed this field
from a craftsmanship to a science. This transformation started with the
development and publication of a translation technique for IAL by Bauer
and Samelson, who initiated the ALGOL effort to construct a translation
technique and matching language simultaneously.

The language was made to fit the technique, and vice versa. When Bauer
and Samelson, some months before the publication of the ALGOL 60 report,
published their technique, it was widely read. Because of the popularity of
ALGOL 60 many implementations of ALGOL 60 translators were started,
often based upon the technique described by Bauer and Samelson. During
this process, the isolated efforts to create an algebraic language became part
of a larger effort: the ALGOL effort.

Although there was a translation technique for IAL, some elements of
ALGOL 60 requested the extension of the technique (notably the imple-
mentation of recursion and procedures by Dijkstra (1960), and by Feurzeig
and Irons (1960)). Both groups came to similar solutions, fitting into the
well-known translation technique.

Other approaches to the translation of ALGOL were improving the tech-
nique and inventing new techniques. Both Grau (1961) and Lucas (1961)
improved the technique by tackling the size of the translation matrix. Both

59

3 Translation

arrived to a solution with recursive procedures in which the later recursive
descent parsing technique can be recognised.

Irons (1961) invented a new technique of translation based on the struc-
ture of ALGOL. From left to right, from bottom to top, his technique was
based on a metalanguage in which both syntax and semantics were to be
specified. A general translator was then able, with these specifications and
a program text, to translate the program into a executable version.

Although these approaches to develop syntax directed translators were
different, the lack of a common notation, terminology, or theory was strik-
ing. Clearly, the field missed a sound theory to be able to evolve from a
craft into a science. Ginsburg and Rice (1962) supplied the field with this
theory: they created the connection between Chomsky’s (1956) context-free
languages and ALGOL-like languages and hence connected the field of pro-
gramming languages with other theories of computing and automata theory.

The further development of the field of translator writing, although re-
lated to ALGOL at first, was no longer ALGOL centred. It became an
independent field of research, with an own vitality, evolving freely from the
ALGOL effort. But what was the most influential part of the ALGOL effort
for the transformation of the field of translator writing? Bauer and Samel-
son’s translation technique or the structured definition of ALGOL 60? Or the
whole ALGOL effort as it created a common notation, theory and technique?

3.5 Notes
0K. Samelson and F. L. Bauer, ‘Sequential formula translation’, Commun. ACM 3:2

(1960)
1E. W. Dijkstra, ‘Recursive Programming’, Numerische Mathematik 2 (oct 1960)
2Idem, ‘An ALGOL 60 Translator for the X1’, in: Richard Goodman, editor, Annual

review in automatic programming 3 (1963), p. 3
3F.E.J. Kruseman Aretz, The Dijkstra-Zonneveld ALGOL 60 compiler for the Elec-

trologica X1 (Amsterdam: CWI, 2003), 〈URL: http://ftp.cwi.nl/CWIreports/SEN/
SEN-N0301.pdf〉, p. 1

4Dijkstra, ‘An ALGOL 60 Translator for the X1’
5Idem, ‘Making a Translator for ALGOL 60’, in: Richard Goodman, editor, Annual

review in automatic programming 3 (1963)
6Seymour Ginsburg and H. Gordon Rice, ‘Two Families of Languages Related to AL-

GOL’, J. ACM 9:3 (1962)
7Donald E. Knuth, ‘A History of Writing Compilers’, in: Pollack and W. Bary, editors,

Compiler Techniques (Princeton, 1972), p. 44
8ibid., p. 39
9J. H. Wegstein, ‘From formulas to computer oriented language’, Commun. ACM 2:3

(1959), p. 7
10ibid.
11ibid.

60

http://ftp.cwi.nl/CWIreports/SEN/SEN-N0301.pdf
http://ftp.cwi.nl/CWIreports/SEN/SEN-N0301.pdf

3.5 Notes

12Friedrich L. Bauer and K. Samelson, ‘Sequentielle Formelübersetzung’, Elektronische
Rechenanlagen 1:1 (1959)

13Samelson and Bauer, ‘Sequential formula translation’
14F. L. Bauer, ‘The Cellar Pronciple of State Transition and Storage Allocation’, Annals

of the History of Computing 12:1 (1990), p. 43
15Samelson and Bauer, ‘The ALCOR project’, p. 207,217
16ibid., p. 208
17ibid.
18Samelson and Bauer, ‘Sequential formula translation’, p. 208
19Changed example from Samelson and Bauer, ‘The ALCOR project’, p. 209
20Changed example from ibid.
21Bauer, ‘The Cellar Pronciple of State Transition and Storage Allocation’, p. 46,47
22Bauer, ‘From the Stack Principle to ALGOL’, p. 34
23ibid., p. 35
24Bauer, ‘The Cellar Pronciple of State Transition and Storage Allocation’, p. 47
25ibid.
26Samelson and Bauer, ‘Sequential formula translation’, p. 210
27ibid., p. 78
28ibid.
29Samelson and Bauer, ‘The ALCOR project’, p. 215
30L. L. Bumgarner and M. Feliciano, ‘ALCOR Group Representation of ALGOL Sym-

bols’, Commun. ACM 6:10 (1963), p. 597
31Peter Naur, ‘ALGOL translator characteristics and the progress in translator con-

struction’, ALGOL Bull. 10 (1960)
32ibid.
33ibid.
34E. T. Irons and W. Feurzeig, ‘Comments on the Implementation of Recursive Proce-

dures and Blocks in Algol-60’, ALGOL Bull. Sup 13.2 (1960), p. 1
35Dijkstra, ‘Recursive Programming’
36ibid., p. 313
37Irons and Feurzeig, ‘Comments on the Implementation of Recursive Procedures and

Blocks in Algol-60’
38ibid., p. 4
39ibid.
40P. Z. Ingerman, ‘Thunks: a way of compiling procedure statements with some com-

ments on procedure declarations’, Commun. ACM 4:1 (1961)
41J. Jensen and Peter Naur, ‘An Implementation of Algol 60 Procedures. (pre-print from

Nordisk Tidskrift for Informations-Behandling, Volume 1, No 1 -1961)’, ALGOL Bull. Sup
11 (1961)

42Irons and Feurzeig, ‘Comments on the Implementation of Recursive Procedures and
Blocks in Algol-60’, p. 5

43ibid.
44D. Brooker, R. A. and Morris, ‘An Assembly Program for a Phrase Structure Lan-

guage’, The Computer Journal 3:3 (1960), 〈URL: http://comjnl.oxfordjournals.org/
cgi/content/abstract/3/3/168〉

45Idem, ‘Some Proposals for the Realization of a Certain Assembly Program’, The Com-
puter Journal 3:4 (1961), 〈URL: http://comjnl.oxfordjournals.org/cgi/content/
abstract/3/4/220〉

46A. A. Grau, ‘Recursive processes and ALGOL translation’, Commun. ACM 4:1 (1961)

61

http://comjnl.oxfordjournals.org/cgi/content/abstract/3/3/168
http://comjnl.oxfordjournals.org/cgi/content/abstract/3/3/168
http://comjnl.oxfordjournals.org/cgi/content/abstract/3/4/220
http://comjnl.oxfordjournals.org/cgi/content/abstract/3/4/220

3 Translation

47Edgar T. Irons, ‘A syntax directed compiler for ALGOL 60’, Commun. ACM 4:1
(1961)

48Idem, ‘The Structure and Use of the Syntax Directed Compiler’, in: Richard Good-
man, editor, Annual review in automatic programming 3 (1963)

49Robert S. Ledley and James B. Wilson, ‘Automatic-programming-language translation
through syntactical analysis’, Commun. ACM 5:3 (1962)

50P. Lucas, ‘The Structure of Formula-Translators’, ALGOL Bull. Sup 16 (1961)
51ibid., p. 1
52ibid., p. 14
53ibid.
54ibid., p. 15
55ibid.
56Ginsburg and Rice, ‘Two Families of Languages Related to ALGOL’, p. 350
57Michael S. Mahoney, ‘Computer Science. The Search for a Mathematical Theory’,

in: John Krige and Dominique Pestre, editors, Science in the 20th Century (Amster-
dam: Harwood Academic Publishers, 1997), 〈URL: http://www.princeton.edu/∼mike/
articles/20thcSci/20thcent.html〉

62

http://www.princeton.edu/~mike/articles/20thcSci/20thcent.html
http://www.princeton.edu/~mike/articles/20thcSci/20thcent.html

4 Succession
In Search of a Worthy Successor to ALGOL 60

Using ALGOL 60 • As the main communication language •Maintenance
of ALGOL 60 needed for acceptance in industry • On ALGOL X and
ALGOL Y • Creating a successor to ALGOL 60 • How ALGOL 68 was
the end of the ALGOL effort

4.0 Use and maintenance of ALGOL 60

In the February 1960 issue of the Communications of the ACM, a new de-
partment, ‘Algorithms’, was announced and it was dedicated to algorithms
written in the ALGOL language.0 Until the publication of the ALGOL 60
report in May 1960, the ALGOL language used in this department was IAL,
after that, it was ALGOL 60. Later, ALGOL 60 was also used in several
books and other journals like the Computer Journal, the Computer Bulletin,
Numerische Mathematik, B.I.T., and ALGORYTHMY.1

For years, it was the main communication language for algorithms. Be-
sides, it was also a popular language to teach programming at universities.
As a result, whole generations of computer scientists grew up with ALGOL
60 and were influenced by ALGOL 60.

Although ALGOL 60 was the most used programming language for man-
to-man communication, it was certainly not the most used algebraic pro-
gramming language to instruct computers with. Unfortunately, there are no
sources on the use of ALGOL 60 or, for that matter, on the use of any other
programming language. Two observations can be made, however: ALGOL
60 was used more in Europe than in the USA and ALGOL 60 was more
popular in academic circles than in industry.

In the early 1960s, the computing community in the USA was much more
developed than in Europe. Consequently, there was already a large amount of
programs written in certain languages. Switching to a new language without
a trusted implementation and not backed by a computer manufacturer was
almost impossible. Migration to a new language would mean retraining of

63

4 Succession

experienced programmers and rewriting of working software.
In Europe, the computing community was strongly influenced by the

American industry, especially by IBM. On the other hand, the development
in computer science took place at universities and research centres and AL-
GOL was popular in these circles. Furthermore, the European computing
industry was emerging and the legacy of already existing software was much
smaller than in the USA. In Germany, the government stimulated the use
of ALGOL by requiring an ALGOL implementation on every computer or-
dered by a university. Although the USA government did support COBOL
for data-processing, it did not support a language for algebraic applications.2

Consequently, a new language like ALGOL 60 was able to gain more support
in Europe than in the USA.

The popularity of ALGOL in universities and research centres can be
explained by the nature of the ALGOL effort and its results. The ALGOL
effort introduced the BNF and some new programming language concepts.
Furthermore, it stimulated research on formal languages, programming lan-
guages, and translation techniques. In other words, the ALGOL effort was
for a part an academic effort.

As said before, switching to ALGOL 60 was in industry not economically
sound. There were more reasons why ALGOL was not accepted by industry,
however. According to a survey on programming languages and processors
from late 1962 there were many different ALGOL translators from different
groups and companies.3 FORTRAN, on the other hand, had also many trans-
lators, almost all of them, however, were made by IBM.4 Hence, FORTRAN
was conceived as a standard and ALGOL was not.

FORTRAN was pushed by IBM and IBM became the biggest computer
manufacturer in the 1960s. At the RAND Symposium in 1961, the future of
ALGOL was discussed. Bemer started the discussion with: ‘No reasonable
mechanism for maintenance seems to exist. No one seems to be able to
answer the basic question, ”What is ALGOL?” I foresee a difficult time for
ALGOL unless a revised maintenance procedure is devised. The language is
too general and has too many ambiguities.’5 Galler added that ‘it just isn’t
readable and people don’t read it.’6

The problem of the difficult notation in which ALGOL 60 was described
would gradually disappear when the BNF became common knowledge among
computer scientists. It was, on the other hand, an obstacle for many pro-
grammers to consider ALGOL 60 at all.

The problem of maintenance, however, was a more serious one. Soon
after the publication of the ALGOL 60 report, it became clear that the
report contained errors and ambiguities. Already in June 1960, Peter Naur
wrote a letter to the authors of the ALGOL 60 report to propose four minor

64

4.1 The move of responsibility for ALGOL to WG 2.1

improvements.7 Unfortunately, only six authors of the report reacted and
they did not agree with each other on the four changes.8

Meanwhile, the American ACM ALGOL subcommittee was transformed
into the ALGOL Maintenance Group.9 They proposed that in Europe a
similar maintenance group would be formed or that some Europeans would
become members of the American Maintenance Group.10 Bauer and Samel-
son were advocates of the latter option because they feared that two different
groups would lead to two different languages.11 Others, especially the Rus-
sians, wanted a separate European maintenance group.12 The Europeans
held their discussions on the maintenance of ALGOL in the ALGOL Bulletin.
The work of the American ALGOL Maintenance Group was also reported in
that bulletin.

The difference between the European and American approach to the
maintenance of ALGOL is striking. In the USA, a formal maintenance group
was founded almost directly after the publication of the ALGOL 60 report.
The members were coming from the universities, industry and governmen-
tal research centres.13 Although not explicitly stated, the American ALGOL
Maintenance Group tried also to be a substitute for a governing body behind
ALGOL. One of the main problems for the acceptation of ALGOL in indus-
try was the lack of one responsible and stable organisation behind ALGOL.
Where FORTRAN had IBM, ALGOL had just a bunch of scientists from all
over the world.

4.1 The move of responsibility for ALGOL to Working

Group 2.1 of IFIP

During 1960 and 1961, many problems with ALGOL 60 were collected and
discussed. In the ALGOL Bulletin number 14, Peter Naur included a ques-
tionaire on the status of maintenance.14 Although rather lengthy, there were
three main points: ambiguities and obscurities, recommended subsets, and
proposed extensions. In the June 1962 bulletin the results were published.15

During March 26 – 31 1962, a symposium on Symbolic Languages in
Data Processing was held in Rome. A week earlier, the Working Group
2.1 on ALGOL was established as part of Technical Committee 2 (program-
ming languages) of the International Federation of Information Processing
Societies (IFIP). After the Rome symposium, on 2 and 3 April, eight of the
authors of the ALGOL 60 report, some advisors and the chairman of the
new founded Working Group 2.1, W.L. van der Poel, held a meeting to clean
up the ALGOL 60 report. As the basis of this meeting the answers to the
questionaire of ALGOL Bulletin 14 were used. The result of the meeting was

65

4 Succession

the Revised Report on the Algorithmic Language ALGOL 60 16 and the transfer
of responsibility for ALGOL to this Working Group 2.1 of IFIP. ALGOL
got ‘a new home’ as Daniel D. McCracken (1962) put it.17 With this move
to IFIP, it seemed that the problem of the lack of a governing body behind
ALGOL was solved. However, IFIP was not a strong organisation like IBM,
but an international organisation of national computing centres without any
budget of its own. ALGOL got its home, but it was yet far from home.

The meeting in Rome was not completely successful. First of all, not all
problems with ALGOL 60 were resolved, five problems were left to be solved
by Working Group 2.1. These problems were: side effects of functions, the
call-by-name concept, static or dynamic own-concept, static or dynamic for-
statement, and the conflict between specification and declaration.18 Second,
other ambiguities and inconsistencies remained in the language. In 1965,
Donald E. Knuth published A list of the remaining trouble spots in ALGOL
60 19 in the ALGOL Bulletin. This list contained ten ambiguities and twelve
corrections. Later, in 1969, some extra corrections were added to the list.20

Finally, not everyone agreed with the move to IFIP. Especially Peter Naur
felt that he was wronged by this move.

Although Peter Naur was not present at Rome, he had sent the partic-
ipants the answers to question 40 of the questionaire in ALGOL Bulletin 14.
This question was to ‘indicate the order of preference of your group of the
following bodies as far as the official adoption of clarifications, subsets, and
extensions of ALGOL 60 is concerned.’21 Most people (17) wanted to stay
with the current situation of the USA Maintenance Group and the ALGOL
Bulletin as their first choice. Furthermore, only ten people wanted IFIP to
take over and eight people wanted an ad hoc committee. As second choice,
IFIP was even less popular (3 votes).22 Based on these results, Naur could
not support the move of ALGOL maintenance to IFIP.

Despite Naur’s objection, the IFIP Technical Committee established none-
theless a working group to take over responsibility for the ALGOL effort.23

The chairman of Working Group 2.1, van der Poel, offered Naur the job of
secretary of Working Group 2.1. Naur would only accept it if the more in-
fluential members of the effort like Bauer and Samelson would support him.
They did not and accused Naur instead of being biased in his presentation
of questionaire 14.24 Peter Naur interpreted this as that ‘it is clear that the
responsible bodies of IFIP, in establishing the Working Group, deliberately
have chosen to ignore the existence of the ALGOL Bulletin and the infor-
mation and opinions expressed in it.’25 Peter Naur decided to stop with his
work on the ALGOL Bulletin which would not be published again until 1964.

Unfortunately, Peter Naur was the only one reporting on these events,
it is uncertain if his view corresponded with the view of the other authors

66

4.2 On ALGOL X and Y

of the ALGOL report or with members of the ALGOL effort. For sure, the
six authors at the Rome meeting did not vote against a move to IFIP. In
addition, six of the twelve authors of the ALGOL 60 report became member
of Working Group 2.1, including Peter Naur.26 It seemed that half of the
authors were not interested in further involvement with ALGOL.

This early phase of the work of Working Group 2.1 was not very inter-
esting. Not only opponents of IFIP and the ALGOL effort governed by the
IFIP like Peter Naur27 and Wirth28, but also van der Poel29, the chairman
of Working Group 2.1 agreed on this. The Working Group produced only
a subset of ALGOL 60 and a report on input-output procedures. These
documents were another consequence of the maintenance started after the
publication of the ALGOL 60 report. Recall that one of the goals of the
ALGOL effort was to create a universal algorithmic language. Although the
ALGOL language was designed to be machine independent, implementations
were, of course, machine dependent. The problem was that almost no trans-
lator was complete. Furthermore, given the ambiguities in the report, not all
implemented features could be guaranteed to work in the same way on ev-
ery implementation. And, again, the lack of input-output procedures, which
were needed in practical situations, enforced implementors to add extensions
to the language.

To improve this situation, three approaches were taken: defining subsets,
defining input-output procedures and standardisation of ALGOL 60. Unfor-
tunately, there were different subsets defined: SMALGOL 6130, the ALCOR
group subset31, the ECMA subset32, and the IFIP subset33. Also different
input-output procedures were defined: one by Knuth, also known as Knuth-
put,34 and one by IFIP35. Finally, there were also different standardisation
efforts going on: by ISO, by IFIP, by ECMA, and by the ASA. These stan-
dardisation efforts were another aspect of creating a stable language and to
make the language more acceptable in industry.

4.2 Creating a successor to ALGOL 60: On ALGOL X

and Y
During the first half of the 1960s, maintenance of ALGOL meant solving
ambiguities, removing errors, creating subsets and standardisation. Besides
these aspects, there was always the wish for certain extensions to and im-
provements of the language. In 1964, Working Group 2.1 started with a new
project: developing a new ALGOL. For the short time, there was ALGOL X
and for the long time ALGOL Y. In practice, this difference was not so clear.
Simple extensions of ALGOL 60 were clearly for ALGOL X, but for the more

67

4 Succession

ambitious and often disputable features, the predicate ‘being for ALGOL Y’
meant often that it was to be reconsidered sometime in the future again.
Most discussions in Working Group 2.1 were on ALGOL X, but ALGOL Y
was never forgotten.36

At the symposium on Symbolic Languages in Data Processing, March
1962 in Rome, a discussion was held on the necessity of extensions to AL-
GOL 60.37 Most of the panel members wanted some kind of extension to
ALGOL 60. These wishes ranged from input-output (I/O) procedures, sym-
bol manipulation, cleaning up of the for statement, double precision numbers,
more types, to the ability to define new types. Most of these extensions were
requested because of experience gained in the two years of using ALGOL 60,
that is, they were needed in practical situations. However, with these ex-
tensions, the language would become more a general purpose programming
language than a language intended for algorithmic work only.

Even before this symposium, the need for extra types was expressed by
R.W. Hockney in the June 1961 edition of the ALGOL Bulletin. He proposed
the extension of ALGOL with the complex type and a more general array
concept.38 With these additions, ALGOL would be better suited to describe
algorithms involving complex numbers, matrices and bit patterns.

Another, more interesting proposal was made by Niklaus Wirth in 1963.
He proposed to generalise ALGOL by removing type declarations and by
replacing procedure declarations by so called ‘quoted expressions’.39 New
variables were declared with the new operator and the type of the variables
would be deduced at run time. In cases the deduced type would result in
meaningless operations, the value undefined was to be assigned.

Quotations were expressions or a list of statements enclosed by the ‘’’
symbol, hence the name quotation. Quotations could be assigned to vari-
ables even with parameters between parenthesises. Where a quotation vari-
able was used the contents of the quotation were replaced. Normal calls of
these procedure-like variables resulted in call-by-value calls of the param-
eters. However, when one of the parameters was a quotation, it became
effectively a call-by-name call.

In May 1964, F.G. Duncan revived the ALGOL Bulletin. In this “first”
issue the open ends from the last issue were closed and a new project started.
In a meeting of the Working Group 2.1 in March 1964 in Tutzing, ‘there was
a considerable body of opinion in favour of developing a so-called ”ALGOL
X” by building extensions on to ALGOL 60. This extended language would
provide both a long overdue short-term solution to existing difficulties and a
useful tool in the development of the radically reconstructed future ALGOL
(the so-called ”ALGOL Y”).’40

Till May 1965, when draft proposals for ALGOL X were requested, and

68

4.2 On ALGOL X and Y

October 1965, when these drafts were presented, various proposals were made
and discussed in the ALGOL Bulletin. Some proposals were simple or similar
to other proposals, some were more interesting.

One of the interesting proposals was the case expression. C.A.R. Hoare
made this proposal as a replacement for the switch in October 1964.41 There
was an earlier proposal to remove the switch concept by Duncan and van
Wijngaarden. They introduced the type label to enable arrays of labels which
the same function as the switch.42 Hoare’s proposal, however, was more
flexible in the sense that no array of labels had to be initialised first, nor the
problems attached to labels had to be taken in account.

An example of Hoare’s case expression is case n −2 of (1−y/z else 1 +
y/z else 1). Here the case-clause n−2 decides which expression of the list
following the case-clause is executed. If this case expression is 1, then the first
expression is executed. If it has value 2, the second expression is executed,
etc. If the value of the case-clause is 0, negative, or exceeds the number of
expressions, the whole case expression was undefined. In the example, only
for n = 3, 4, or 5, the case expression has a non-undefined value, namely one
of the expressions in the list following the case-clause.

Another proposal in the October 1964 issue of the ALGOL Bulletin was
made by Peter Naur.43 He focused on the problem of ALGOL 60 being
too rigidly machine independent. Because of that, features of particular
machines could not be used in the language. Naur wanted to introduce a
special element, the Environment Enquiry, to give the programmer informa-
tion about the characteristics of the particular implementation and machine
the program is running on.

Programs can become machine independent by using machine dependent
characteristics which influences the working of the program. For example,
if there is not enough memory space, the program can decide to stop run-
ning. Another examples are the maximum and minimum integer values.
In addition, Naur (1964) proposed the possibility to create new operators,
or redefine operators, the string type, the problem of labels and switches,
non-rectangular arrays, and the difference between operators and standard
functions.

In the ALGOL Bulletin of November 1965, Gerhard Seegmüller published
some of his proposals for ALGOL X. He, too, wanted more types: complex,
character or string, bit and label. The for statement was cleaned up, that
is, omit the step if it is 1. He introduced a new repetitive statement, the
all statement. A variable in the all-clause would get assigned to all the
consecutive values specified in the all-list, that is, a list with numbers, or
expressions generating numbers.

He introduced (1965) also the reference variable as a generalisation of

69

4 Succession

the call-by-name concept. To that end he invented the ref operator. The
reference type can be used in combination with other types into a reference
array, a reference integer, or a reference integer procedure. Procedures were
adapted in such a way that the call-by-name parameter calling was replaced
with the call-by-reference parameter calling. A special case of the last call-
type was the call-by-procedure to enable the Jensen device.

In January 1966, Niklaus Wirth and Helmut Weber published their Euler
language in the Communication of the ACM4445. This language was already
discussed at the Princeton meeting of Working Group 2.1 in May 1965.46 The
article on Euler is about the way how to define a programming language,
about an algorithm for syntactical analysis of phrase structure languages,
and about the programming language Euler itself. Although the method of
definition described by Wirth and Weber is interesting, it played a minor role
in the ALGOL effort: the defining method invented by van Wijngaarden was
used to describe ALGOL X, and eventually ALGOL 68. The various pro-
gramming languages defined later by Wirth all used the BNF as the defining
method.

The language itself47 builds upon Wirth’s earlier generalisation of AL-
GOL48 (1963). The rigid type concept of ALGOL 60 was replaced by a more
general type concept. Variables did not have a special type, and the types of
ALGOL 60 were supplemented with types reference, label, symbol, list, pro-
cedure and undefined. Types were assigned to variables and to procedures
in a dynamic way.

The most interesting type introduced in Euler was the list type. It had to
replace arrays, but it was more flexible than arrays: all kind of values can be
assigned to list elements, even lists itself, so tree-like structures were possible.
To manipulate lists, special operators were introduced and elements in the
list could be accessed by an index number, starting at one.

Procedures were similar to the ‘quotations’ described earlier. Procedure
texts could be assigned to variables and besides the call-by-value and call-
by-name, the call-by-reference was also available. Every expression resulted
in a value. In case of an assignment, it was the value of the expression on
the right hand side. In case of an output-expression it was the value of the
expression being outputted. There were only two kinds of declarations: a
new variable was declared with the new keyword and labels with the label

keyword.
In the November issue of the ALGOL Bulletin in 1965, C.A.R. Hoare

made a proposal for record handling.49 The possibility to create and use
records improved a programming language enormously, it could now be ap-
plied to many more problem(area)s. Where records were initially invented
for data processing, i.e. in COBOL, it was now proposed as a general pro-

70

4.3 On ALGOL X and Y

gramming language construct.
Every record belongs to one and only one record class defined by the

programmer. Such a record class denotes a certain object existing in the
“real world”. Every object has some properties, denoted by fields. A field is
like a variable, and has a name and a type and can contain a value. Fields
were declared in the declaration of the record class.

Besides properties, records can also contain relationships. To denote rela-
tionships, the type reference is introduced. In a record class definition, a field
may be a reference to a record belonging to a certain record class and denotes
the relationship between two records in terms of record classes. Furthermore,
records can be created dynamically, that is, at run time by statements in the
program.

Record fields are accessible by “functions” with the same name, which,
applied to a record belonging to the record class, return the value of the field.
So, given a record class containing the fields A and B and a record of that
class named R, the value of field A of R is A(R) and it can be set by A(R) :=
value. Fields which are references, return a record, and repetitive application
of fields is possible. thus A(B(R)) denotes the A value of the B value, which
is a reference to record R of the same class.

In addition, two operations were defined: the destruction operator and
the record class identifier as the constructor operator. Besides that, the null

value was added to denote a reference to no record at all.
Hoare (1965) also gave some possible extensions to his record concept.

The idea of procedure fields is interesting in the light of the concept of an
object in object oriented programming.51 Another extension was the set
concept. Instead of encoding a set with integers and write the program using
these integers, Hoare proposed to give a set a name and list all the items.
Thus set suit(clubs, diamonds, hearts, spades); would define the set suit with
four items. Extra operators, like is a, should be added too.

In October 1965, Peter Naur proposed to change the way procedures
were specified. Instead of procedure P(a, b, c) ; value b; integer a, b; real c;

he wanted to write procedure P(integer a, integer value b, real c) ;.52 The
advantages were a better readability and less repetition of keywords.

The main line in these proposals is clear: ALGOL X would introduce
some new types, type flexibility, records, a better iterative statement, no
labels nor denotational expressions, a case expression, I/O, string handling,
and for the rest it would be an improved version of ALGOL 60. Instead of a
special-purpose programming language, the new language would be a general
programming language suitable for a wide range of computational problems.
The need for an algorithmic language in the late 1950s had evolved in the
need of a general purpose programming language in the 1960s. Numerical

71

4 Succession

record class person;

begin

integer date of birth;

Boolean male;

reference father, mother, youngest offspring, elder sibling (person)

end;

reference Jack, Jill (person)

begin

reference John (person);

John := person; comment creates the record John

date of birth(John) := today;

male(John) := true;

father(John) := Jack;

mother(John) := Jill;

youngest offspring(John) := null;

elder sibling(John) := youngest offspring(Jack);

youngest offspring(Jack) := John

end

Figure 4.0: Example from C.A.R. Hoare’s article on record handling.50

applications were clearly not the only relevant applications any more.

4.3 The end of the ALGOL effort: the creation of AL-

GOL 68

4.3.0 Orthogonality versus pragmatism

In the previous section, the proposed extensions and changes to ALGOL
60 were discussed. These proposals where the basis for the development of
ALGOL X. At the meeting of Working Group 2.1 at Princeton, May 1965,
only one more or less complete proposal was available.53 The members of
the group were then invited to create their own proposal for ALGOL X.54

In October 1965, the next meeting of the Working Group was held at Saint
Pierre de Chartreuse and three proposals were presented.55 Wirth’s (1966)
Euler was combined with Hoare’s (1966) proposal for records and was the
most feature complete proposal. Seegmüller’s proposal was, basically, an

72

4.3 The end of the ALGOL effort: the creation of ALGOL 68

extension to Wirth’s (1963) earlier proposal and was not seen as a serious
candidate.56

The last proposal was Orthogonal design and description of a formal lan-
guage57 by van Wijngaarden. It was not really a proposal for a language,
but a proposal for a better method to define programming languages. In this
report, three new ideas were expressed.58 First of all, a two-level grammar
was used instead of the BNF. This grammar would later be known as vW-
grammar or W-grammar. Second, van Wijngaarden proposed orthogonality,
or in his own words: ‘As to the design of a language I should like to see
the definition of a language as a Cartesian product of its concepts.’59 Fi-
nally, the language defined was an expression-oriented language: there was
no distinction between expressions and statements.

The result of this meeting was that a subcommittee was founded con-
sisting of the four authors of proposals for ALGOL X. Together they would
decide upon one final proposal for ALGOL X. However, it was also decided
that the resulting language would be described in the notation invented by
van Wijngaarden.60 The subcommittee decided further that van Wijngaar-
den would write the proposal and would send it to the others for discussion.61

In addition, another subcommittee was created to discuss I/O.62

In April 1966, the subcommittee working on the new proposal held a
meeting at Kootwijk where two proposals were presented. The proposal of
van Wijngaarden was written using the accepted notation, but was not com-
plete. The other proposal was written by Wirth and Hoare and would later
be published in the Communications of the ACM as A Contribution to the
Development of ALGOL63. Their proposal, although not written in the right
notation, was felt to describe the right language.64 Unfortunately, Hoare
and Wirth on the one hand, and Seegmüller and van Wijngaarden on the
other hand could not decide upon one language acceptable by all. The or-
thogonality pushed by van Wijngaarden conflicted with the more pragmatic
approach taken by Wirth and Hoare.65 They wanted to create a language
which could become ALGOL 66 and they felt that the language proposed by
van Wijngaarden was too ambitious.66

4.3.1 A contribution to the development of ALGOL

Wirth and Hoare decided to publish their proposal in the Communications of
the ACM as A Contribution to the Development of ALGOL. The goals stated at
the start of the article were: to give a presentation of where the ALGOL effort
was heading for a broader public; be a document which could be used for
experimental implementations; and describe problems for further extention.67

The language was designed with four criteria in mind: it should be usable

73

4 Succession

for programming computers; it should be usable usable as a communication
language; it should be usable for teaching and research; and it should be as
practical usable as possible.68

The language described contained, with respect to ALGOL 60, new data
types: complex, a long variant for both real and complex, sequences in the
form of a sequence of bits (called bits) and a sequence of characters (called
string). For these new types, appropriate operators and functions were de-
fined too, like the concatenate operator for strings, the logical operators for
bits, and type conversions. In addition, the language was strong typed: types
of expressions were known at compile time.

Switches were replaced by the case expression. Labels became just labels,
that is, place markers for use with the go to statement. All other forms of
designational expressions were removed. The iterative statements were sim-
plified and contained only the while and the for-step-until variants. Parame-
ters to procedures are either value-parameters, or result-parameters. Arrays
were slightly simplified. the record type was added including references to
records as proposed by Hoare.

After this short introduction into the main features of the language, the
authors gave some extensions: extra string operations, more flexible types,
initial values and constants, array constructors (initial values for arrays),
and more flexible handling of records, for example, the union denoting that
a record reference variable may refer to records of all record classes in the
union, or a is operator deciding if a record is of a certain record class.

Then the formal definition of the language defined using the BNF fol-
lowed. In part three, the ‘proposed set of standard procedures’ or standard
library was discussed. This library contained I/O, environment enquiries like
in Naur’s (1964) proposal (making the programmer able to ask questions on
the implementation and decide on certain features in the program, like the
biggest integer), mathematical functions, like sin, pi, ln, exp, etc.

This document was the basis for the further development of languages
by Wirth. In September 1966, Wirth reported in the ALGOL Bulletin that
he was implementing the language on an IBM 360 at Stanford University.69

While implementing he came across some problems and altered the language
accordingly. Some syntactic sugar for arrays was introduced, like x[i , j] in-
stead of x[i][j]. Strings became static, that is, they could not grow, and were
declared being of a certain length. In the for statement, the step element may
be omitted when one. Concurrency was added with the also keyword: S also

T means that S and T are executed concurrently. Synchronisation of parallel
processes was available via P and V operations invented by Dijkstra, Wirth
(1966) called them on and off respectively.

74

4.3 The end of the ALGOL effort: the creation of ALGOL 68

4.3.2 The end and the ALGOL 68 report

Although the subcommittee could not agree upon one proposal, van Wijn-
gaarden did create a new draft for the next meeting of Working Group 2.1
in Warshaw. Actually, the meeting was moved to October 1966 because
Van Wijngaarden was unable to produce the draft in time.70 At the meet-
ing, the main question was if this draft could be accepted because it was
written by only one member of the subcommittee. Wirth did not attend
the meeting and resigned later form Working Group 2.1 alltogether. Hoare
wanted to consider accepting the draft only if it was completed first; the
results of the I/O subcommittee was not yet added to the draft of van Wijn-
gaarden.71 Besides these more formal discussions, some technical matters
were also treated. Some people wanted to restrict references to records only,
the diagonal approach, which conflicted with the orthogonal approach taken.
In this orthogonal approach references should be applicable to all objects,
not only records. McCarthy proposed operator overloading and Samelson
anonymous subroutines.72

At the end of the meeting there was still no complete draft. It was decided
that van Wijngaarden would edit alone the draft which would be complete
at the next meeting in May. Van Wijngaarden thought that ‘the delay in
producing the final version may not be very long’73, however, it would be
February 1968 before the draft, known as MR 9374, was ready. It ‘was the
cause of much shock, horror and dissent, even (perhaps especially) amongst
the membership of WG2.1. It was said that the new notation for the grammar
and the excessive size of the document made it unreadable.’75

Opposition agains the notation and the draft became louder, dropping the
draft or adding a minority report became realistic options.76 At the meeting
in Münich, December 1968, the ultimate decision had to be made: drop it
or accept it as ALGOL 68. Report on the Algorithmic Language ALGOL 68 77

was accepted and a minority report was published too, signed by almost half
of all the members of Working Group 2.1.78 stating that:

We regard the current Report on Algorithmic Language 68
as the fruit of an effort to apply a methodology for language
definition to a newly designed programming language. We regard
the effort as an experiment and professional honesty compels us
to state that in our considered opinion we judge the experiment
to be a failure in both respects.

The failure of the description methodology is most readily
demonstrated by the sheer size of the Report in which, as stated
on many occasions by its authors, ”every word and every symbol

75

4 Succession

matters” and by the extreme difficulty of achieving correctness.

(...)

We fail to see how the language proposed here is an significant
step forward: on the contrary, we feel that its implicit view of the
programmer’s task is very much the same as, say, ten years ago.
This forces upon us the conclusion that, regarded as a program-
ming tool, the language must be regarded as obsolete.79

The spirit with which the ALGOL effort started in the 1950s was broken.
The ALGOL effort ended with a failure for some. Others, however valued the
new language, especially after the publication of the revision in September
1973. The language was not used much in industry, although it was used
in the academic world, but less than ALGOL 60 was. It is often regarded,
however, that it influenced many languages which were developed later. The
question is if the language itself was influential, or that the development of
the language was influential.

In my definition, the ALGOL effort ends here with the publication of the
ALGOL 68 report and the Minority Report. This does not mean that there
were no further developments in Working Group 2.1 and the ALGOL Bul-
letin: as was the case with ALGOL 60, ALGOL 68 also had its maintenance
period and the last ALGOL Bulletin was issued in 1988.

4.4 Conclusion

The question that should be asked is what was the importance of this period
of maintenance and succession? Was it important, and if so, why? First of
all, the maintenance of ALGOL 60 was necessary for ALGOL itself. It was
necessary to become accepted in industry, although it did not work out very
well.

Although ALGOL 60 was the most used programming language for man-
to-man communication, it failed to truly become the universal algebraic pro-
gramming language for man-to-machine communication due to the computa-
tional context of that time: the predominance of IBM pushing FORTRAN,
the legacy of applications already created and used in the industry. ALGOL
was a new untested language and, especially on the American market and
outside universities, it could not win the fight with FORTRAN.

Second, the move to IFIP seemed a wise move for the ALGOL effort: the
lack of a governing body was now solved. It was, however, too late to obtain a
fundamental part of the market. As part of IFIP, Working Group 2.1 created
some reports on subsets, I/O, and standardisation. These results were not

76

4.5 Notes

very interesting and definitely not important for the field of programming
languages or computer science.

The move to create a successor to ALGOL 60 in 1964, was much more
important. The ALGOL effort became a platform where the best computer
scientists of that day discussed programming languages. Many proposals
were made and discussed, most of them boiling down to extra types, string
handling, cleaning up the for statement, and other minor improvements.
Major improvements were made by Hoare: the case expression which allowed
the removal of designational expressions and part of the label concept. More
important was his paper on record handling (1966).

With records came references and with references the call-by-name con-
cept could be replaced with call-by-reference. Although records were not
new, Hoare made them a general programming language concept. There
were other proposals, on overloading and the ability to (re)define operators.
Furthermore, the standard library became larger, containing not only math-
ematical functions, but also I/O, string handling, and casts.

There was clearly a move from a special-purpose language towards a
general programming language. Unfortunately, Working Group 2.1 was not
able to define the new language with agreement of all its members. The new
language had to be defined in the notatation invented by van Wijngaarden,
which turned out to result in a unreadable report. After much delay, the draft
was presented and accepted by the Working Group, however, not without a
Minority Report of almost half of the Working Group. In this report it was
stated that they considered the new language a failure.

4.5 Notes
0J. H. Wegstein, ‘Algorithms: Anouncement’, Commun. ACM 3:2 (1960)
1R. W. Bemer, The Programmer’s ALGOL: A Complete Reference (London: McGraw-

Hill, 1967), chap. Foreword, p. x
2ibid., p. viii
3Bro, ‘Survey of programming languages and processors’, Commun. ACM 6:3 (1963),

p. 5
4ibid., p. 4
5J. H. Wegstein, ‘ALGOL: a critical profile. The RAND Symposium, part two’, Data-

mation 10 (1961), p. 41
6ibid.
7Peter Naur, ‘ALGOL 60 Maintenance’, ALGOL Bull. 10 (1960), pp. 1–2
8ibid., p. 1
9ibid., p. 7

10ibid., p. 4
11Idem, ‘ALGOL 60 Maintenance’, ALGOL Bull. 11 (1960), p. 1
12ibid., pp. 2–3

77

4 Succession

13Idem, ‘ALGOL 60 Maintenance’, p. 5
14Idem, ‘The Questionnaire’, ALGOL Bull. 14 (1962), pp. 1–14
15Idem, ‘The discontinuation of the ALGOL Bulletin’, ALGOL Bull. 15 (1962)
16J. W. Backus et al., ‘Revised report on the algorithm language ALGOL 60’, Com-

mun. ACM 6:1 (1963)
17Daniel D. McCracken, ‘A New Home for ALGOL’, Datamation 5 (1962), p. 44
18Backus et al., ‘Revised report on ALGOL 60’, pp. 2–3
19D. E. Knuth, ‘A list of the remaining trouble spots in ALGOL60’, ALGOL Bull. 19

(1965)
20Derick Wood, ‘A few more trouble spots in ALGOL 60’, Commun. ACM 12:5 (1969)
21Naur, ‘The Questionnaire’, p. 13
22Idem, ‘The discontinuation of the ALGOL Bulletin’, p. 2
23ibid.
24ibid., p. 3
25ibid.
26C. H. Lindsey, A history of ALGOL 68, in: HOPL-II: The second ACM SIGPLAN

conference on History of programming languages (New York, NY, USA: ACM Press, 1993),
p. 7

27Peter Naur, ‘Successes and failures of the ALGOL effort’, ALGOL Bull. 28 (1968),
p. 60

28N. Wirth, ‘Closing word at Zurich Colloquium’, ALGOL Bull. 29 (1968), p. 19
29W. L. van der Poel, Some Notes on the History of ALGOL, in: A Quarter Century of

IFIP (Amsterdam: Elsevier, 1986), p. 374
30G. A. Bachelor et al., ‘SMALGOL-61’, Commun. ACM 4:11 (1961)
31Bumgarner and Feliciano, ‘ALCOR ALGOL Symbols’
32Fraser G. Duncan, ‘ECMA Subset of ALGOL 60’, Commun. ACM 6:10 (1963)
33S. Gorn, ‘Report on SUBSET ALGOL 60 (IFIP)’, Commun. ACM 7:10 (1964)
34D. E. Knuth, ‘A proposal for input-output conventions in ALGOL 60’, Commun. ACM 7:5

(1964)
35Gor, ‘Report on Input-Output Procedures for ALGOL 60’, Commun. ACM 7:10

(1964)
36Van der Poel, ‘Some Notes on the History of ALGOL’, p. 375
37P. Dreyfus, General Panel Discussion. Are Extensions to ALGOL 60 necessary and if

so What Ones?, in: Symbolic Languages in Data Processing (London: Gordon and Breach
Science Publishers, 1962)

38R. W. Hockney, ‘A Proposed Extension to Algol 60’, ALGOL Bull. Sup 12 (1961)
39Niklaus Wirth, ‘A generalization of ALGOL’, Commun. ACM 6:9 (1963)
40F. G. Duncan and A. van Wijngaarden, ‘Cleaning up ALGOL60’, ALGOL Bull. 16

(1964), p. 24
41C. A. R. Hoare, ‘Case expressions’, ALGOL Bull. 18 (1964)
42Duncan and Van Wijngaarden, ‘Cleaning up ALGOL60’
43P. Naur, ‘Proposals for a new language’, ALGOL Bull. 18 (1964)
44Niklaus Wirth and Helmut Weber, ‘EULER: a generalization of ALGOL and it formal

definition: Part 1’, Commun. ACM 9:1 (1966)
45Idem, ‘EULER: a generalization of ALGOL, and its formal definition: Part II’, Com-

mun. ACM 9:2 (1966)
46Van der Poel, ‘Some Notes on the History of ALGOL’, p. 374
47Wirth and Weber, ‘EULER: a generalization of ALGOL, and its formal definition:

Part II’

78

4.5 Notes

48Wirth, ‘A generalization of ALGOL’
49C. A. R. Hoare, ‘Record Handling’, ALGOL Bull. 21 (1965)
50ibid., pp. 43–44
51Actually, SIMULA 67 was developed in the late 1960s as an extension of ALGOL 60

and successor to SIMULA and influenced by Hoare’s article and it is often called the first
object oriented language. There the concept of records and record classes was used for
processes and activities, respectively.

52Peter Naur, ‘The form of specifications’, ALGOL Bull. 22 (1966)
53Van der Poel, ‘Some Notes on the History of ALGOL’, p. 374
54ibid., p. 375
55Lindsey, ‘A history of ALGOL 68’, p. 8
56ibid.
57A. Van Wijngaarden, ‘Orthogonal design and description of a formal language’ (Octo-

ber 1965), 〈URL: http://www.fh-jena.de/∼kleine/history/languages/VanWijngaarden-MR76.
pdf〉

58Lindsey, ‘A history of ALGOL 68’, p. 8
59Wijngaarden, ‘Orthogonal Design’, p. 3
60Van der Poel, ‘Some Notes on the History of ALGOL’, p. 377
61Lindsey, ‘A history of ALGOL 68’, p. 9
62ibid.
63Niklaus Wirth and C. A. R. Hoare, ‘A contribution to the development of ALGOL’,

Commun. ACM 9:6 (1966)
64Lindsey, ‘A history of ALGOL 68’, p. 9
65Van der Poel, ‘Some Notes on the History of ALGOL’, p. 378
66ibid., p. 379
67Wirth and Hoare, ‘A contribution to the development of ALGOL’, p. 4113
68ibid., pp. 413–414
69N. Wirth, ‘Additional Notes on - Contribution to the Development of ALGOL’, AL-

GOL Bull. 24 (1966), p. 13
70Van der Poel, ‘Some Notes on the History of ALGOL’, p. 379
71Lindsey, ‘A history of ALGOL 68’, p. 10
72ibid.
73Van der Poel, ‘Some Notes on the History of ALGOL’, p. 379
74A. Van Wijngaarden et al., Draft Report on the Algorithmic Language ALGOL 68,

edited by Idem (Amsterdam: Mathematisch Centrum, 1968)
75Lindsey, ‘A history of ALGOL 68’, pp. 11–12
76Van der Poel, ‘Some Notes on the History of ALGOL’, pp. 385–386
77A. Van Wijngaarden et al., Report on the Algorithmic Language ALGOL 68, edited

by Idem (Amsterdam: Mathematisch Centrum, 1969)
78Lindsey, ‘A history of ALGOL 68’, pp. 14–15
79Dijkstra et al., ‘Minority Report’

79

http://www.fh-jena.de/~kleine/history/languages/VanWijngaarden-MR76.pdf
http://www.fh-jena.de/~kleine/history/languages/VanWijngaarden-MR76.pdf

5 Conclusion
Summary and Conclusions

Summary • Important contributions of the ALGOL effort to computer
science • BNF, programming language concepts and syntax directed
translation • Connected by the theory of context-free languages • And
the contribution of the scientific field of translator writing • Success and
failure of the ALGOL effort

In the introduction the question was asked: What was the importance of
the ALGOL effort for the development of computer science? After having
studied four phases of the ALGOL effort, Creation, Notation, Translation,
and Succession, it is time to answer the question and draw conclusions. Be-
fore answering this question, however, a summary of the preceding chapters
is given.

5.0 Summary

5.0.0 The start of the ALGOL effort

In Chapter 1 the history of the start of the ALGOL effort and the reasons for
its existence were told. In the late 1950s, the need for a universal algorithmic
programming language was felt. In Central Europe, a GAMM subcommittee
was founded to create an algebraic language and during the development of
this language the ACM in the USA was contacted. It was decided that both
the GAMM subcommittee and the newly formed ACM subcommittee would
create a proposal for an algorithmic language. At the Zürich meeting in 1958,
both subcommittees met and they drew up a proposal for an international
algebraic language: IAL.

Two questions were asked: why was there a need for a universal algorith-
mic language and why did it have to be IAL and not some of the already
existing languages? First of all, in the USA, the field of computing became
an industry in the 1950s. Computers were sold to and used by many corpora-
tions, research centres and the government. In this commercial atmosphere,

80

5.0 Summary

using problem-oriented programming languages, like algorithmic languages
or data-processing languages was needed to make profitable the use of the
expensive computing machines.

These programming languages, or automatic coding systems, did have a
bad name: it was believed that they were fundamentally inefficient. The
FORTRAN programming system, however, proved the opposite as FOR-
TRAN programs were efficient, although not as efficient as hand-coded pro-
grams. Problem-oriented languages were seen as a necessity and many re-
search groups and computer companies started creating these languages for
both internal use and as part of the commercial computer systems that they
were selling. Unfortunately, this development resulted in the creation of
many similar, but different algorithmic programming languages. In this con-
text the cry for a universal algorithmic programming language became louder.

In Europe, the situation was totally different. The field of computing
was emerging and the first larger computers were being built. The main
application for these machines was scientific computing. Instructing these
computers was a difficult and error prone task. To solve this problem, work
was started on formula translation and eventually on an algorithmic language
in the GAMM subcommittee. Instead of creating yet another algorithmic
language, the members of the subcommittee proposed to jointly create one
international algebraic language to the ACM.

The Americans did not base their proposal on an already existing lan-
guage. IT and MATH-MATIC were not sufficient or well known. FORTRAN,
on the other hand, was well known, but the American members of the com-
mittee did not want to increase the dominance of IBM. As a result, the ACM
subcommittee proposed a new language. The combination of the two pro-
posals resulted in IAL: a new algorithmic language like other algorithmic
languages of that time.

This start of the ALGOL effort was important because it created a com-
mon goal among computer scientists from the USA and Europe: develop-
ing one algorithmic language. Creating one universal algorithmic language
became part of the agenda of computer science.0 This may not sound im-
portant, but in an emerging field, as was the case with computer science,
it meant more coherence. It meant that computer scientists could identify
themselves, both to each other and to the outer world, as workers in computer
science.

To enable this international development, however, communication be-
tween scientists was necessary. Although they had meetings dedicated to
their common goal, communication on programming languages between dif-
ferent groups and people with different backgrounds appeared difficult: a
sufficient notation to describe and discuss programming languages was lack-

81

5 Conclusion

ing.

5.0.1 From IAL to ALGOL 60: notation and language

A sufficient notation was developed during the two years between the pub-
lication of the draft report on IAL and the publication of the ALGOL 60
report. In Chapter 2 this development of notation is discussed. Notation is
important because it enables one to formally define a language in such a way
that everyone can read and interpret the definition in the same way.

The notation to describe the early programming languages, like FOR-
TRAN and IAL, was mostly natural language combined with some patterns
denoting the form of the various language elements. The problem with this
notation was ambiguity. Even for simple language elements, like numbers,
expressions and simple control structures, this was already a problem. For
complex structures like the procedure statement and declarations it was more
problematic.

To give a more formal and complete description of the syntax of IAL
a new notation was invented by Backus: the Backus Normal Form. Using
this simple notation, complex structures in the language could be described
formally. Unfortunately, the procedure concept of IAL was too complex to
be described using this notation.

The procedure concept was also the most controversial topic in the various
discussions on the development of ALGOL 60. Eventually, in the ALGOL
60 report, the procedure concept was strongly simplified. Input and output
parameters were removed and call-by-name and call-by-value parameters in-
troduced. Another important aspect of the new language was the notion of
a block with its own scope. This block was an extension of the compound
statement from IAL. What was new was recursion, added implicitly to the
language because it was not explicitly forbidden.

The ALGOL 60 report was edited by Peter Naur. He wrote the draft
version and used a slightly modified version of Backus’s notation to describe
the language. This draft was used as the basis for the ALGOL meeting. The
final report would become the standard method of defining programming
languages and the BNF became the standard method to describe the syntax
of programming languages.

The importance of this phase of the ALGOL effort was twofold. First of
all, it resulted in a new notation which would become the standard to define
and describe programming languages. Although the goal of the ALGOL ef-
fort was to create a universal algorithmic language, it also created a universal
metalanguage to describe all programming languages. The scope of the effort

82

5.0 Summary

became larger than only the development of ALGOL 60: the whole field of
programming languages became the scope of the ALGOL effort.

Second, the ALGOL effort became truly international and the result,
ALGOL 60, was a new programming language, substantially different from
the earlier algorithmic languages. It had a clear syntax and it introduced
some interesting concepts to a broader public, like blocks, procedures and
recursion.

In 1958, the common goal of the ALGOL effort was shared by a small
number of computer scientists from the USA and Central Europe. With the
publication of the ALGOL 60 report, the common spirit was shared by many
computer scientists from all over the world. Computer science had produced
a potent result: ALGOL 60.

5.0.2 From craftsmanship to science: translating ALGOL 60

The potential of ALGOL 60 became clear during the implementation phase
in the early 1960s: the ALGOL effort was a catalyst, transforming the field
of translator writing from craftsmanship into a science. This transformation
started with the development and publication of a translation technique for
IAL by Bauer and Samelson. They were the initiators of the ALGOL effort
and started with the construction of both a language and translation tech-
nique. Although their technique was known and developed by many other
computer scientists, it was the publication of their technique that made it so
important.

The language was made to fit the technique, and vice versa. When Bauer
and Samelson, some months before the ALGOL 60 was created, published
their technique, their article became widely read. And, because of the pop-
ularity of ALGOL 60, the implementation of many translators was being
started, many based upon the technique described by Bauer and Samelson.
During this process, the isolated nature of efforts to create an algebraic lan-
guage was finally broken: publication and referring to publications became
the norm.

Although there was a translation technique for IAL, to translate ALGOL
60, the technique had to be extended. These extensions fitted into the well
known translation technique. Other approaches to the translation of ALGOL
were improving the technique and inventing new techniques: syntax directed
translation techniques. A new technique was invented based on the structure
of ALGOL. From left to right, from bottom to top, this technique was based
on a metalanguage in which both syntax and semantics were to be specified.
A general translator was then able, with these specifications and a program
text, to translate the program into a executable version.

83

5 Conclusion

Although these approaches were different, the lack of a common nota-
tion, terminology, or theory was striking. Clearly, the field missed a sound
theory to be able to evolve from a craft into a science. Ginsburg and Rice
supplied the field with a theory: they created the connection between Chom-
sky’s context-free languages and ALGOL-like languages and hence connected
the field of programming languages with other theories of computing and au-
tomata theory. With that, computer science received its own theoretical
component.

The further development of the field of translator writing, although re-
lated to ALGOL at first, was no longer ALGOL centred. It became an active
field of research, evolving independently from the ALGOL effort.

5.0.3 In search of a worthy successor to ALGOL 60

The ALGOL effort continued with a period of maintenance. A formal main-
tenance body was necessary to become accepted, although it did not work
out very well. Although ALGOL 60 was the most used programming lan-
guage for man-to-man communication, it failed to truly become the universal
language due to the computational context of that time: the predominance
of IBM pushing FORTRAN, the legacy of applications already created and
used in industry. ALGOL was a new untested language, and, especially on
the American market and outside universities, it could not win the fight with
FORTRAN.

Second, the ALGOL effort was moved to IFIP, solving the lack of a gov-
erning body. It was, however, too late to gain a fundamental part of the
market. As part of IFIP, Working Group 2.1 created some reports on sub-
sets, I/O, and standardisation. These results were not very interesting, and,
not important for the field of programming languages or computer science.

The move to create a successor to ALGOL 60 in 1964, however, was
much more important. The ALGOL effort became a platform for the best
computer scientists of that period to discuss programming languages and
their underlying concepts. Many proposals were made and discussed, most
of them boiling down to extra types, string handling, cleaning up the for

statement, and other minor improvements. Major improvements were made
by Hoare: the case expression which allowed the removal of designational
expressions and part of the label concept.

More important was his paper on record handling. With records came
references and with references, the controversial call-by-name parameter con-
cept could be replaced with the call-by-reference parameter concept. Al-
though records were not new, Hoare made them a general programming
language concept.

84

5.1 Conclusions: The important contributions by the ALGOL effort

There were other proposals, on overloading and the ability to (re)define
operators. Furthermore, van Wijngaarden proposed orthogonality, one of the
most important contributions to programming. In addition, the standard
library became larger, containing not only mathematical functions, but also
I/O, string handling, and type casts.

There was clearly a move from a special-purpose language towards a gen-
eral programming language. Unfortunately, Working Group 2.1 was not able
to define the new language with agreement of all members. The new language
had to be defined in a new notatation, the van Wijngaarden grammar, which
turned out to result in an unreadable report. After much delay, the draft
was presented and accepted by the Working Group as the ALGOL 68 report,
however, not without a Minority Report signed by almost half of Working
Group 2.1. In this minority report it was stated that they considered the
new language a failure. And so the ALGOL effort came to a sad end.

5.1 Conclusions: The important contributions by the

ALGOL effort

5.1.0 The Backus Naur Form

One of the most important contributions to computer science by the ALGOL
effort was the notation to define the syntax of programming languages: the
BNF. Besides the BNF the ALGOL 60 report as a whole was also important
because it would set the example for the definition of programming languages.
By using the BNF to define the syntax of ALGOL 60 the report itself became
a clear and structured document.

The BNF was developed by Backus to be able to define the syntax of
IAL in a formal way. It was an huge improvement over earlier notations
to describe programming languages. These earlier notations used natural
language mixed with patterns. As a result, these notations were ambiguous
and unable to formally define a programming language completely.

Although Backus’s notation was an improvement, Backus was not able to
define the complex procedure concept with his notation. Furthermore, the
notation did not gain much attention until Naur used it for the draft ALGOL
60 report. In this report, he changed Backus’s notation by replacing some
symbols and using complete words instead of abbreviations. With the interest
generated by the ALGOL 60 report the BNF also became well known.

The use of the BNF to define the syntax of ALGOL 60 resulted in a highly
structured language. Programming language concepts known from IAL were
more clearly defined. This clarification of programming language concepts

85

5 Conclusion

was most visible by the procedure concept: the complex procedure statement
from IAL was transformed into an elegant, simple and powerful procedure
statement in ALGOL 60.

Although the BNF was important for the definition and development of
ALGOL 60, the greatest importance of the BNF lie in its general applica-
bility: the BNF could be used to define all ALGOL-like programming lan-
guages. After the publication of the ALGOL 60 report the syntax of almost
all programming languages would be defined using the BNF. The ALGOL
effort had supplied computer science with a notation to define programming
languages.

5.1.1 Programming language concepts

Another important contribution by the ALGOL effort was the introduction
or popularisation of programming language concepts. Although IAL was just
another algebraic programming language like other programming languages
of that time, it introduced the compound statement: one or more state-
ments enclosed by the begin and end keywords were treated as one single
“compound” statement.

The power of this compound statement became clear in the ALGOL 60
report: the compound statement was transformed into a special case of the
block concept. A block consisted of a number of declarations followed by a
number of statements and the whole was enclosed by the begin and end key-
words. A compound statement was a block without declarations. Through
these declarations a block got its own local scope known only inside the block.

The block was the building block of ALGOL 60: every ALGOL 60 pro-
gram was a block containing declarations and statements wherein blocks
could occur. As said earlier, the procedure concept was simplified in AL-
GOL 60. It now consisted of a heading and a body. The body was a block.
In the heading the name, a list of arguments, and declarations of the argu-
ments could be specified.

In the definition of the procedures of ALGOL 60 the distinction between
call-by-name and call-by-value parameters was made. The call-by-value pa-
rameter is straightforward: the value of an argument was used as the value of
the parameter in the body of the procedure. The call-by-name concept was
different. Instead of assigning the value of the argument to the parameter
in the body, the parameter in the body was substituted with the text of the
argument.

The procedure concept in ALGOL 60 was also important because it made
recursion possible. Although recursion was already known, ALGOL 60 pop-
ularised the concept.

86

5.1 Conclusions: The important contributions by the ALGOL effort

During the development of a successor to ALGOL 60 other programming
language concepts were introduced or popularised as well. Most notably were
the case statement, the environment enquiries, orthogonality and the record
concept including the reference type and call-by-reference parameter concept.

The importance of the ALGOL effort was that it made these programming
language concepts mainstream. Since ALGOL 60 blocks and recursion are
included in almost all programming languages, since the record proposal
was made by Hoare (1965), records are common in general programming
languages.

In addition, the various programming language concepts introduced in
the ALGOL effort and the discussions about these concepts influenced other
programming languages and thinking about programming languages in gen-
eral.

5.1.2 Syntax directed translation and dynamic memory manage-
ment

Besides the BNF and new programming language concepts the ALGOL effort
contributed also translation techniques. First of all, new programming lan-
guage concepts like procedures, recursion, and variable sized arrays did not
directly fit in the well known sequential translation technique. An execution
of an IAL program was, with respect to memory usage, static in nature: at
compile time all memory management was done.

ALGOL 60, however, was another matter as a result of its possible dy-
namic behaviour: the bounds of arrays could be unknown at compile time
and recursion could be of any unknown depth (as long as there was enough
memory, of course). These problems were already solved in 1960 by different
people by introducing an extra runtime stack to allocate memory for those
dynamic elements. This dynamic memory management was general applica-
ble to all translators for all languages where dynamic memory management
was needed.

Besides dynamic memory management the ALGOL effort started an an-
other approach to translation of programming languages: syntax directed
translation. Influenced by the structure of ALGOL 60 and the BNF research
was started to exploit this structure to create ALGOL 60 translators. It ap-
peared that similar patterns of BNF definitions could be translated by similar
translation schemes. This resulted in general translator schemes applicable
to all ALGOL-like languages.

87

5 Conclusion

5.1.3 The contribution of the field of translator writing

All contributions by the ALGOL effort to computer science mentioned above
were in itself important. The main importance of the ALGOL effort was,
however, the combined contribution. The BNF, the programming language
concepts, and the syntax directed translation techniques were connected by
Ginsburg and Rice (1962) by proving the equivalence of languages defined
by the BNF (notably ALGOL 60) and context-free languages.

With this connection a scientific field of translation was created: the prac-
tice of ALGOL became founded on a theoretical basis of formal languages.
Soon research on formal languages, including programming languages, and
on the connection with other mathematical theories like automata theory
was started. In addition, the syntax directed translation techniques evolved
rapidly by applying the new established theory. During the 1960s and 1970s,
the field of translation became the best known field of computer science.

The importance of the ALGOL effort lies in its scope. Although the
ALGOL effort produced several programming languages, it was not bound to
these languages only. The contributions of the ALGOL effort were applicable
to programming languages in general.

5.2 Success and failure

In the previous section the importance of the ALGOL effort for computer
science is made clear. The ALGOL effort was a success. Furtermore, AL-
GOL 60 did become the most used programming language for man-to-man
communication. On the other hand, the ALGOL effort was also a failure:
the languages it produced did not become the universal algorithmic program-
ming language in industry. Although it was used in Europe more than in the
USA, it could not beat FORTRAN. FORTRAN became the de facto stan-
dard programming language for numerical work. This contradictory nature
of the ALGOL effort is striking. How can something both be such a success
and such a failure?

Of course, the answer on the question about success depends on the def-
inition of success. Nonetheless, ALGOL was intended to be used as a pro-
gramming language to instruct computers with and it failed in that respect.
Despite its quality ALGOL was not received well in industry. From the per-
spective of the industry ALGOL was not a trustworthy language: it lacked a
governing body. Where FORTRAN had IBM, ALGOL 60 had nothing but a
bunch of scientists. The dominance of IBM and FORTRAN was also a part
of the explanation of the failure of ALGOL; there were many computer man-

88

5.3 Notes

ufacturers willing to implement and ship the language with its computers
but they were not able to break the dominance of IBM.

The ALGOL languages, however, did become the main communication
language for algorithms in many journals and publications. Furthermore,
it was also often used to teach programming at universities. As a result,
ALGOL became well known among computer scientists and influenced their
thinking on programming languages. In addition, the ALGOL effort was the
platform to discuss programming languages, and many features discussed
during the development of ALGOL 68 would appear later in other program-
ming languages. With respect to communication and influence, ALGOL was
a success.

That the ALGOL languages could not become major players among the
programming languages in industry did not affect its influence or its im-
portance. On the contrary, by being a minor language there was less need
for stabilisation or backwards compatability. By being an “academic lan-
guage” ALGOL stayed object of research and development. Consequently,
the ALGOL effort was able to prepare the way for a new generation program-
ming languages, like Simula, Pascal, C, Smalltalk, etc., without the ballast
of legacy.

5.3 Notes
0As believed necessary for the establishment of a scientific field by Mahoney in: Ma-

honey, ‘Computer Science. The Search for a Mathematical Theory’

89

Bibliography
‘Survey of programming languages and processors’, Commun. ACM 6:3

(1963), pp. 93–98.

‘Report on Input-Output Procedures for ALGOL 60’, Commun. ACM 7:10
(1964), pp. 628–630.

ACM, ‘A. M. Turing Award’ (2006), 〈URL: http://awards.acm.org/

turing/〉.

Bachelor, G. A. et al., ‘SMALGOL-61’, Commun. ACM 4:11 (1961), pp. 499–
502.

Backus, J. W. et al., ‘Report on the algorithmic language ALGOL 60’, Com-
mun. ACM 3:5 (1960), pp. 299–314.

Backus, J. W. et al., ‘Report on the algorithmic language ALGOL 60’, Nu-
merische Mathematik 2:1 (1960), pp. 106–136.

Backus, J. W. et al., ‘Revised report on the algorithm language ALGOL 60’,
Commun. ACM 6:1 (1963), pp. 1–17.

Backus, John, The history of FORTRAN I, II, and III, in: HOPL-1: The
first ACM SIGPLAN conference on History of programming languages
(New York, NY, USA: ACM Press, 1978), pp. 165–180.

Backus, John, ‘Programming in America in the 1950s – Some Personal Im-
pressions’, in: Metropolis, N., Howlett, J. and Rota, Gian-Carlo, edi-
tors, A History of Computing in the twentieth century (Academic Press,
1980), pp. 125–135.

Backus, John W., The syntax and semantics of the proposed international
algebraic language of the Zurich ACM-GAMM Conference., in: IFIP
Congress (1959), pp. 125–131.

Backus, J.W. et al., ‘The FORTRAN Automatic Coding System for
the IBM 704 EDPM : Programmer’s Reference Manual’, Tech-
nical report (Applied Science Division and Programming Re-
search Department, International Business Machines Corpora-
tion, 1956), 〈URL: http://community.computerhistory.org/scc/

projects/FORTRAN/704 FortranProgRefMan Oct56.pdf〉.

90

http://awards.acm.org/turing/
http://awards.acm.org/turing/
http://community.computerhistory.org/scc/projects/FORTRAN/704_FortranProgRefMan_Oct56.pdf
http://community.computerhistory.org/scc/projects/FORTRAN/704_FortranProgRefMan_Oct56.pdf

Bibliography

Bauer, F. L., ‘The Cellar Pronciple of State Transition and Storage Alloca-
tion’, Annals of the History of Computing 12:1 (1990), pp. 41–49.

Bauer, F. L. and Wössner, H., ‘The ‘Plankalkül’ of Konrad Zuse: a forerun-
ner of today’s programming languages’, Commun. ACM 15:7 (1972),
pp. 678–685.

Bauer, Friedrich L., ‘Between Zuse and Rutishauser – The Early Develop-
ment of Digital Computing in Central Europe’, in: Metropolis, N.,
Howlett, J. and Rota, Gian-Carlo, editors, A History of Computing in
the twentieth century (Academic Press, 1980), pp. 505–524.

Bauer, Friedrich L., From the Stack Principle to ALGOL, in: Broy, Man-
fred and Denert, Ernst, editors, Software pioneers : contributions to
software engineering (Berlin: Springer, 2002), pp. 26–42.

Bauer, Friedrich L. and Samelson, K., ‘Sequentielle Formelübersetzung’,
Elektronische Rechenanlagen 1:1 (1959), pp. 176–182.

Bemer, R. W., The Programmer’s ALGOL: A Complete Reference (London:
McGraw-Hill, 1967), chap. Foreword, pp. vii–xiii.

Bemer, R. W., ‘A Politico-Social History of Algol’, in: Halpern, Mark I. and
Shaw, Christopher J., editors, Annual review in automatic program-
ming, volume 5 (London: Pergamon, 1969), pp. 151–237.

Brooker, R. A. and Morris, D., ‘An Assembly Program for a Phrase
Structure Language’, The Computer Journal 3:3 (1960), 〈URL: http:
//comjnl.oxfordjournals.org/cgi/content/abstract/3/3/168〉,
pp. 168–174.

Brooker, R. A. and Morris, D., ‘Some Proposals for the Realiza-
tion of a Certain Assembly Program’, The Computer Journal 3:4
(1961), 〈URL: http://comjnl.oxfordjournals.org/cgi/content/

abstract/3/4/220〉, pp. 220–231.

Bumgarner, L. L. and Feliciano, M., ‘ALCOR Group Representation of AL-
GOL Symbols’, Commun. ACM 6:10 (1963), pp. 597–599.

Campbell-Kelly, Martin, Computer: a history of the information machine
(BasicBooks, 1996).

Dijkstra et al., ‘Minority Report’, ALGOL Bull. 31 (1970), p. 7.

91

http://comjnl.oxfordjournals.org/cgi/content/abstract/3/3/168
http://comjnl.oxfordjournals.org/cgi/content/abstract/3/3/168
http://comjnl.oxfordjournals.org/cgi/content/abstract/3/4/220
http://comjnl.oxfordjournals.org/cgi/content/abstract/3/4/220

Bibliography

Dijkstra, E. W., ‘Recursive Programming’, Numerische Mathematik 2 (oct
1960), pp. 312–318.

Dijkstra, E. W., ‘An ALGOL 60 Translator for the X1’, in: Goodman,
Richard, editor, Annual review in automatic programming 3 (1963),
pp. 329–345.

Dijkstra, E. W., ‘Making a Translator for ALGOL 60’, in: Goodman,
Richard, editor, Annual review in automatic programming 3 (1963),
pp. 347–356.

Dreyfus, P., General Panel Discussion. Are Extensions to ALGOL 60 neces-
sary and if so What Ones?, in: Symbolic Languages in Data Processing
(London: Gordon and Breach Science Publishers, 1962), pp. 811–832.

Duncan, F. G. and Wijngaarden, A. van, ‘Cleaning up ALGOL60’, ALGOL
Bull. 16 (1964), pp. 24–32.

Duncan, Fraser G., ‘ECMA Subset of ALGOL 60’, Commun. ACM 6:10
(1963), pp. 595–597.

Flamm, Kenneth, Creating the Computer (The Brookings Institution, 1988).

Ginsburg, Seymour and Rice, H. Gordon, ‘Two Families of Languages Re-
lated to ALGOL’, J. ACM 9:3 (1962), pp. 350–371.

Gorn, S., ‘Report on SUBSET ALGOL 60 (IFIP)’, Commun. ACM 7:10
(1964), pp. 626–628.

Grau, A. A., ‘Recursive processes and ALGOL translation’, Com-
mun. ACM 4:1 (1961), pp. 10–15.

Hoare, C. A. R., ‘Case expressions’, ALGOL Bull. 18 (1964), pp. 20–22.

Hoare, C. A. R., ‘Record Handling’, ALGOL Bull. 21 (1965), pp. 39–69.

Hockney, R. W., ‘A Proposed Extension to Algol 60’, ALGOL Bull. Sup 12
(1961), pp. 1–12.

IBM, Programming Research Group, ‘Preliminary Report – Specifica-
tions for the IBM Mathematical FORmula TRANslating System
FORTRAN’, Technical report (New York: IBM, 1954), 〈URL:
http://community.computerhistory.org/scc/projects/FORTRAN/

BackusEtAl-PreliminaryReport-1954.pdf〉.

92

http://community.computerhistory.org/scc/projects/FORTRAN/BackusEtAl-Preliminary Report-1954.pdf
http://community.computerhistory.org/scc/projects/FORTRAN/BackusEtAl-Preliminary Report-1954.pdf

Bibliography

Ingerman, P. Z., ‘Thunks: a way of compiling procedure statements with
some comments on procedure declarations’, Commun. ACM 4:1 (1961),
pp. 55–58.

Irons, E. T. and Acton, F. S., ‘A proposed interpretation in ALGOL’, Com-
mun. ACM 2:12 (1959), pp. 14–15.

Irons, E. T. and Feurzeig, W., ‘Comments on the Implementation of Recur-
sive Procedures and Blocks in Algol-60’, ALGOL Bull. Sup 13.2 (1960),
pp. 1–15.

Irons, Edgar T., ‘A syntax directed compiler for ALGOL 60’, Com-
mun. ACM 4:1 (1961), pp. 51–55.

Irons, Edgar T., ‘The Structure and Use of the Syntax Directed Compiler’, in:
Goodman, Richard, editor, Annual review in automatic programming
3 (1963), pp. 207–227.

Jensen, J. and Naur, Peter, ‘An Implementation of Algol 60 Procedures. (pre-
print from Nordisk Tidskrift for Informations-Behandling, Volume 1,
No 1 -1961)’, ALGOL Bull. Sup 11 (1961), pp. 38–47.

Knuth, D. E., ‘A proposal for input-output conventions in ALGOL 60’, Com-
mun. ACM 7:5 (1964), pp. 273–283.

Knuth, D. E., ‘A list of the remaining trouble spots in ALGOL60’, ALGOL
Bull. 19 (1965), pp. 29–38.

Knuth, Donald E., ‘backus normal form vs. Backus Naur form’, Com-
mun. ACM 7:12 (1964), pp. 735–736.

Knuth, Donald E., ‘A History of Writing Compilers’, in: Pollack and Bary,
W., editors, Compiler Techniques (Princeton, 1972), pp. 38–56.

Knuth, Donald E. and Pardo, Luis Trabb, ‘Early Development of Program-
ming Languages’, in: Belzer, Jack, Holzman, Albert G. and Kent,
Allen, editors, Encyclopedia of Computer Science and Technology, vol-
ume 7 (Marcel Dekker INC., 1975), pp. 419–493.

Kruseman Aretz, F.E.J., The Dijkstra-Zonneveld ALGOL 60 compiler for
the Electrologica X1 (Amsterdam: CWI, 2003), 〈URL: http://ftp.
cwi.nl/CWIreports/SEN/SEN-N0301.pdf〉, historical note SEN, 2.

93

http://ftp.cwi.nl/CWIreports/SEN/SEN-N0301.pdf
http://ftp.cwi.nl/CWIreports/SEN/SEN-N0301.pdf

Bibliography

Ledley, Robert S. and Wilson, James B., ‘Automatic-programming-language
translation through syntactical analysis’, Commun. ACM 5:3 (1962),
pp. 145–155.

Lindsey, C. H., A history of ALGOL 68, in: HOPL-II: The second ACM
SIGPLAN conference on History of programming languages (New York,
NY, USA: ACM Press, 1993), pp. 97–132.

Lucas, P., ‘The Structure of Formula-Translators’, ALGOL Bull. Sup 16
(1961), pp. 1–27.

Mahoney, Michael S., ‘Computer Science. The Search for a Math-
ematical Theory’, in: Krige, John and Pestre, Dominique,
editors, Science in the 20th Century (Amsterdam: Harwood
Academic Publishers, 1997), 〈URL: http://www.princeton.edu/
∼mike/articles/20thcSci/20thcent.html〉, An electronic version
at http://www.princeton.edu/ mike/articles/20thcSci/20thcent.html is
used. Last visited 19 April 2006..

McCracken, Daniel D., ‘A New Home for ALGOL’, Datamation 5 (1962),
pp. 44–46.

Naur, P., ‘Proposals for a new language’, ALGOL Bull. 18 (1964), pp. 26–43.

Naur, Peter, ‘ALGOL 60 Maintenance’, ALGOL Bull. 10 (1960), pp. 1–10.

Naur, Peter, ‘ALGOL 60 Maintenance’, ALGOL Bull. 11 (1960), pp. 1–4.

Naur, Peter, ‘ALGOL translator characteristics and the progress in translator
construction’, ALGOL Bull. 10 (1960), pp. 14–16.

Naur, Peter, ‘The discontinuation of the ALGOL Bulletin’, ALGOL Bull. 15
(1962), pp. 2–3.

Naur, Peter, ‘The Questionnaire’, ALGOL Bull. 14 (1962), pp. 1–14.

Naur, Peter, ‘The form of specifications’, ALGOL Bull. 22 (1966), pp. 14–14.

Naur, Peter, ‘Successes and failures of the ALGOL effort’, ALGOL Bull. 28
(1968), pp. 58–62.

Naur, Peter, The European side of the last phase of the development of AL-
GOL 60, in: HOPL-1: The first ACM SIGPLAN conference on History
of programming languages (New York, NY, USA: ACM Press, 1978),
pp. 15–44.

94

http://www.princeton.edu/~mike/articles/20thcSci/20thcent.html
http://www.princeton.edu/~mike/articles/20thcSci/20thcent.html

Bibliography

Naur, Peter, Transcripts of Presentations, in: HOPL-1: The first ACM SIG-
PLAN conference on History of programming languages (New York,
NY, USA: ACM Press, 1978), pp. 147–161.

Perlis, A. J. and Samelson, K., ‘Preliminary Report: International Algebraic
Language’, Commun. ACM 1:12 (1958), pp. 8–22.

Perlis, Alan J., The American side of the development of Algol, in: HOPL-
1: The first ACM SIGPLAN conference on History of programming
languages (New York, NY, USA: ACM Press, 1978), pp. 3–14.

Perlis, Alan J., Transcripts of Presentations, in: HOPL-1: The first ACM
SIGPLAN conference on History of programming languages (New York,
NY, USA: ACM Press, 1978), pp. 139–147.

Poel, W. L. van der, Some Notes on the History of ALGOL, in: A Quarter
Century of IFIP (Amsterdam: Elsevier, 1986), pp. 373–392.

Pressroom, ACM, ‘Software Pioneer Peter Naur Wins ACM’s Turing
Award. Dane’s Creative Genius Revolutionized Computer Language
Design’ (2006), 〈URL: http://campus.acm.org/public/pressroom/
press releases/3 2006/turing 3 01 2006.cfm〉.

Rosen, Saul, ‘Programming Systems and Languages. A Historical Survey’, in:
Idem, editor, Programming systems and languages (London: McGraw-
Hill, 1967), pp. 3–22.

Rutishauser, H., ‘Automatische Rechenplanfertigung bei programmges-
teuerten Rechenmaschinen’, Z. Angew. Math. Mech. 32:3 (1952),
pp. 312–313.

Rutishauser, Heinz, Description of ALGOL 60, volume 1, edited by Bauer,
F. L. (Springer-Verlag, 1967).

Samelson, K. and Bauer, F., The ALCOR project, in: Gordon and Breach,
editors, Symbolic languages in data processing: Proc. of the Symp. or-
ganized and edited by the Int. Computation Center, Rome, 26-31 March
1962 (New York, 1962), pp. 207–217.

Samelson, K. and Bauer, F. L., ‘Sequential formula translation’, Com-
mun. ACM 3:2 (1960), pp. 76–83.

Sammet, Jean E., Programming languages : history and fundamentals, Series
in Automatic Computation (Englewood Cliffs, N. J.: Prentice-Hall,
1969).

95

http://campus.acm.org/public/pressroom/press_releases/3_2006/turing_3_01_2006.cfm
http://campus.acm.org/public/pressroom/press_releases/3_2006/turing_3_01_2006.cfm

Bibliography

Schwarz, H. R., ‘The Early Years of Computing in Switzerland’, Annals of
the History of Computing 3:2 (1981), pp. 121–132.

Wegstein, J. H., ‘From formulas to computer oriented language’, Com-
mun. ACM 2:3 (1959), pp. 6–8.

Wegstein, J. H., ‘Algorithms: Anouncement’, Commun. ACM 3:2 (1960),
p. 74.

Wegstein, J. H., ‘ALGOL: a critical profile. The RAND Symposium, part
two’, Datamation 10 (1961), pp. 41–45.

Wijngaarden, A. Van, ‘Orthogonal design and description of a formal
language’ (October 1965), 〈URL: http://www.fh-jena.de/∼kleine/
history/languages/VanWijngaarden-MR76.pdf〉, MR 76.

Wijngaarden, A. Van, Draft Report on the Algorithmic Language ALGOL
68, edited by Idem (Amsterdam: Mathematisch Centrum, 1968), MR
93.

Wijngaarden, A. Van, Report on the Algorithmic Language ALGOL 68,
edited by Idem (Amsterdam: Mathematisch Centrum, 1969), MR 101.

Wirth, N., ‘Additional Notes on - Contribution to the Development of AL-
GOL’, ALGOL Bull. 24 (1966), pp. 13–17.

Wirth, N., ‘Closing word at Zurich Colloquium’, ALGOL Bull. 29 (1968),
pp. 16–19.

Wirth, Niklaus, ‘A generalization of ALGOL’, Commun. ACM 6:9 (1963),
pp. 547–554.

Wirth, Niklaus and Hoare, C. A. R., ‘A contribution to the development of
ALGOL’, Commun. ACM 9:6 (1966), pp. 413–432.

Wirth, Niklaus and Weber, Helmut, ‘EULER: a generalization of ALGOL
and it formal definition: Part 1’, Commun. ACM 9:1 (1966), pp. 13–
25.

Wirth, Niklaus and Weber, Helmut, ‘EULER: a generalization of ALGOL,
and its formal definition: Part II’, Commun. ACM 9:2 (1966), pp. 89–
99.

Wood, Derick, ‘A few more trouble spots in ALGOL 60’, Com-
mun. ACM 12:5 (1969), pp. 247–248.

96

http://www.fh-jena.de/~kleine/history/languages/VanWijngaarden-MR76.pdf
http://www.fh-jena.de/~kleine/history/languages/VanWijngaarden-MR76.pdf

Bibliography

Zuse, Konrad, ‘Some Remarks on the History of Computing in Germany’, in:
Metropolis, N., Howlett, J. and Rota, Gian-Carlo, editors, A History of
Computing in the twentieth century (Academic Press, 1980), pp. 611–
627.

97

	Abstract
	Preface
	Contents
	Introduction
	On the sources used
	My own perspective
	The ALGOL effort: a definition
	Notes

	Creation
	The start of the ALGOL effort
	The need for a universal algorithmic language
	The American field of computing
	The European field of computing
	The difference between Europe and the USA and the need for universalism

	Why was IAL chosen over other algorithmic languages?
	IT
	MATH-MATIC
	FORTRAN
	IAL
	Why did IAL have to be the international algebraic language?

	Conclusion
	Notes

	Notation
	Why notation matters?
	Notations used to describe early programming languages
	The notation of IAL and FORTRAN compared
	The quality of IAL's notation

	Backus's notation
	Developing ALGOL 60
	Conclusion
	Notes

	Translation
	From craftsmanship to science
	Sequential formula translation
	The development of the sequential formula translation technique
	Sequental formula translation explained

	Implementing procedures and recursion
	``Solving'' by ignoring
	Dijkstra's Recursive Programming
	The solution of Irons and Feurzeig

	The influence of ALGOL's structure
	Grau's recursive translation technique
	Irons's syntax directed compiler
	Lucas's structure of formula translators
	Connecting ALGOL-like languages with context-free language theory

	Conclusion
	Notes

	Succession
	Use and maintenance of ALGOL 60
	The move of responsibility for ALGOL to WG 2.1
	On ALGOL X and Y
	The end of the ALGOL effort: the creation of ALGOL 68
	Orthogonality versus pragmatism
	A contribution to the development of ALGOL
	The end and the ALGOL 68 report

	Conclusion
	Notes

	Conclusion
	Summary
	The start of the ALGOL effort
	From IAL to ALGOL 60: notation and language
	From craftsmanship to science: translating ALGOL 60
	In search of a worthy successor to ALGOL 60

	Conclusions: The important contributions by the ALGOL effort
	The Backus Naur Form
	Programming language concepts
	Syntax directed translation and dynamic memory management
	The contribution of the field of translator writing

	Success and failure
	Notes

	Bibliography

